These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 11283308)

  • 1. Synaptic modification by correlated activity: Hebb's postulate revisited.
    Bi G; Poo M
    Annu Rev Neurosci; 2001; 24():139-66. PubMed ID: 11283308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity].
    Le Roux N; Amar M; Fossier P
    J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic plasticity: taming the beast.
    Abbott LF; Nelson SB
    Nat Neurosci; 2000 Nov; 3 Suppl():1178-83. PubMed ID: 11127835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete states of synaptic strength in a stochastic model of spike-timing-dependent plasticity.
    Elliott T
    Neural Comput; 2010 Jan; 22(1):244-72. PubMed ID: 19764870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike timing-dependent plasticity: from synapse to perception.
    Dan Y; Poo MM
    Physiol Rev; 2006 Jul; 86(3):1033-48. PubMed ID: 16816145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of STDP based on spatially and temporally local information: derivation and combination with gated decay.
    Gorchetchnikov A; Versace M; Hasselmo ME
    Neural Netw; 2005; 18(5-6):458-66. PubMed ID: 16095878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-regulation mechanism of temporally asymmetric Hebbian plasticity.
    Matsumoto N; Okada M
    Neural Comput; 2002 Dec; 14(12):2883-902. PubMed ID: 12487796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Donald O. Hebb's synapse and learning rule: a history and commentary.
    Cooper SJ
    Neurosci Biobehav Rev; 2005 Jan; 28(8):851-74. PubMed ID: 15642626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond spike timing: the role of nonlinear plasticity and unreliable synapses.
    Senn W
    Biol Cybern; 2002 Dec; 87(5-6):344-55. PubMed ID: 12461625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning.
    Pfister JP; Toyoizumi T; Barber D; Gerstner W
    Neural Comput; 2006 Jun; 18(6):1318-48. PubMed ID: 16764506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal asymmetry in spike timing-dependent synaptic plasticity.
    Bi GQ; Wang HX
    Physiol Behav; 2002 Dec; 77(4-5):551-5. PubMed ID: 12526998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed synaptic modification in neural networks induced by patterned stimulation.
    Bi G; Poo M
    Nature; 1999 Oct; 401(6755):792-6. PubMed ID: 10548104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation decay of synapses and length distributions of synfire chains self-organized in recurrent neural networks.
    Miller A; Jin DZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062716. PubMed ID: 24483495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience-dependent structural synaptic plasticity in the mammalian brain.
    Holtmaat A; Svoboda K
    Nat Rev Neurosci; 2009 Sep; 10(9):647-58. PubMed ID: 19693029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain plasticity mechanisms and memory: a party of four.
    Bruel-Jungerman E; Davis S; Laroche S
    Neuroscientist; 2007 Oct; 13(5):492-505. PubMed ID: 17901258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity.
    Blitzer RD; Iyengar R; Landau EM
    Biol Psychiatry; 2005 Jan; 57(2):113-9. PubMed ID: 15652868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory.
    Maren S; Baudry M
    Neurobiol Learn Mem; 1995 Jan; 63(1):1-18. PubMed ID: 7663875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.