These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 11283363)
41. Topological magnon bands and unconventional thermal Hall effect on the frustrated honeycomb and bilayer triangular lattice. Owerre SA J Phys Condens Matter; 2017 Sep; 29(38):385801. PubMed ID: 28678021 [TBL] [Abstract][Full Text] [Related]
42. Microscopic study of a pressure-induced ferromagnetic-spin-glass transition in the geometrically frustrated pyrochlore (Tb1-xLax)2Mo2O7. Apetrei A; Mirebeau I; Goncharenko I; Andreica D; Bonville P Phys Rev Lett; 2006 Nov; 97(20):206401. PubMed ID: 17155698 [TBL] [Abstract][Full Text] [Related]
43. Quantum spin hall insulator state in HgTe quantum wells. König M; Wiedmann S; Brüne C; Roth A; Buhmann H; Molenkamp LW; Qi XL; Zhang SC Science; 2007 Nov; 318(5851):766-70. PubMed ID: 17885096 [TBL] [Abstract][Full Text] [Related]
44. Large topological Hall effect in the non-collinear phase of an antiferromagnet. Sürgers C; Fischer G; Winkel P; Löhneysen HV Nat Commun; 2014 Mar; 5():3400. PubMed ID: 24594621 [TBL] [Abstract][Full Text] [Related]
45. Anomalous Hall effect from frustration-tuned scalar chirality distribution in Pr2Ir2O7. Udagawa M; Moessner R Phys Rev Lett; 2013 Jul; 111(3):036602. PubMed ID: 23909347 [TBL] [Abstract][Full Text] [Related]
50. Above-ordering-temperature large anomalous Hall effect in a triangular-lattice magnetic semiconductor. Uchida M; Sato S; Ishizuka H; Kurihara R; Nakajima T; Nakazawa Y; Ohno M; Kriener M; Miyake A; Ohishi K; Morikawa T; Bahramy MS; Arima TH; Tokunaga M; Nagaosa N; Kawasaki M Sci Adv; 2021 Dec; 7(52):eabl5381. PubMed ID: 34936456 [TBL] [Abstract][Full Text] [Related]
51. Direct electronic measurement of the spin Hall effect. Valenzuela SO; Tinkham M Nature; 2006 Jul; 442(7099):176-9. PubMed ID: 16838016 [TBL] [Abstract][Full Text] [Related]
52. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Zhang Y; Tan YW; Stormer HL; Kim P Nature; 2005 Nov; 438(7065):201-4. PubMed ID: 16281031 [TBL] [Abstract][Full Text] [Related]
53. Isotropic Nature of the Metallic Kagome Ferromagnet Fe Dally RL; Phelan D; Bishop N; Ghimire NJ; Lynn JW Crystals (Basel); 2021; 11(3):. PubMed ID: 38487672 [TBL] [Abstract][Full Text] [Related]
55. Dimensional reduction at a quantum critical point. Sebastian SE; Harrison N; Batista CD; Balicas L; Jaime M; Sharma PA; Kawashima N; Fisher IR Nature; 2006 Jun; 441(7093):617-20. PubMed ID: 16738655 [TBL] [Abstract][Full Text] [Related]
56. Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors. Yu H; Chen M; Yao W Natl Sci Rev; 2020 Jan; 7(1):12-20. PubMed ID: 35296065 [TBL] [Abstract][Full Text] [Related]
58. π Spin Berry Phase in a Quantum-Spin-Hall-Insulator-Based Interferometer: Evidence for the Helical Spin Texture of the Edge States. Chen W; Deng WY; Hou JM; Shi DN; Sheng L; Xing DY Phys Rev Lett; 2016 Aug; 117(7):076802. PubMed ID: 27563984 [TBL] [Abstract][Full Text] [Related]
59. Spectroscopic demonstration of a large antisymmetric exchange contribution to the spin-frustrated ground state of a D3 symmetric hydroxy-bridged trinuclear Cu(II) complex: ground-to-excited state superexchange pathways. Yoon J; Mirica LM; Stack TD; Solomon EI J Am Chem Soc; 2004 Oct; 126(39):12586-95. PubMed ID: 15453791 [TBL] [Abstract][Full Text] [Related]
60. Magnetic States and Electronic Properties of Manganese-Based Intermetallic Compounds Mn Marchenkov VV; Irkhin VY Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834488 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]