BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11284017)

  • 1. Visualising the activity of the cystine-glutamate antiporter in glial cells using antibodies to aminoadipic acid, a selectively transported substrate.
    Pow DV
    Glia; 2001 Apr; 34(1):27-38. PubMed ID: 11284017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystine/glutamate antiporter expression in retinal Müller glial cells: implications for DL-alpha-aminoadipate toxicity.
    Kato S; Ishita S; Sugawara K; Mawatari K
    Neuroscience; 1993 Nov; 57(2):473-82. PubMed ID: 7906874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glutathione level of retinal Müller glial cells is dependent on the high-affinity sodium-dependent uptake of glutamate.
    Reichelt W; Stabel-Burow J; Pannicke T; Weichert H; Heinemann U
    Neuroscience; 1997 Apr; 77(4):1213-24. PubMed ID: 9130799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha-Aminoadipic acid blocks the Na(+)-dependent glutamate transport into acutely isolated Müller glial cells from guinea pig retina.
    Pannicke T; Stabel J; Heinemann U; Reichelt W
    Pflugers Arch; 1994 Nov; 429(1):140-2. PubMed ID: 7708474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of taurine transporters, taurine, and (3)H taurine accumulation in the rat retina, pituitary, and brain.
    Pow DV; Sullivan R; Reye P; Hermanussen S
    Glia; 2002 Feb; 37(2):153-68. PubMed ID: 11754213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and regulation of L-cystine transporter, system xc-, in the newly developed rat retinal Müller cell line (TR-MUL).
    Tomi M; Funaki T; Abukawa H; Katayama K; Kondo T; Ohtsuki S; Ueda M; Obinata M; Terasaki T; Hosoya K
    Glia; 2003 Sep; 43(3):208-17. PubMed ID: 12898700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the cystine/glutamate antiporter in cultured Bergmann glia cells.
    Suárez-Pozos E; Martínez-Lozada Z; Méndez-Flores OG; Guillem AM; Hernández-Kelly LC; Castelán F; Olivares-Bañuelos TN; Chi-Castañeda D; Najimi M; Ortega A
    Neurochem Int; 2017 Sep; 108():52-59. PubMed ID: 28237844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine tuning of glutamate uptake and degradation in glial cells: common transcriptional regulation of GLAST1 and GS.
    Rauen T; Wiessner M
    Neurochem Int; 2000; 37(2-3):179-89. PubMed ID: 10812203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Counter-transport of potassium by the glutamate uptake carrier in glial cells isolated from the tiger salamander retina.
    Amato A; Barbour B; Szatkowski M; Attwell D
    J Physiol; 1994 Sep; 479 ( Pt 3)(Pt 3):371-80. PubMed ID: 7837095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glial-toxin-mediated disruption of spinal cord locomotor network function and its modulation by 5-HT.
    Baudoux S; Parker D
    Neuroscience; 2008 Jun; 153(4):1332-43. PubMed ID: 18440149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of beta-amyloid precursor and Bcl-2 proto-oncogene proteins in rat retinas after intravitreal injection of aminoadipic acid.
    Chen ST; Wang JP; Garey LJ; Jen LS
    Neurochem Int; 1999 Nov; 35(5):371-82. PubMed ID: 10517698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of L-alpha-aminoadipic acid transport in cultured rat astrocytes.
    Tsai MJ; Chang YF; Schwarcz R; Brookes N
    Brain Res; 1996 Nov; 741(1-2):166-73. PubMed ID: 9001719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal vascular changes after glial disruption in rats.
    Shen W; Li S; Chung SH; Gillies MC
    J Neurosci Res; 2010 May; 88(7):1485-99. PubMed ID: 20029988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential perturbation of neuronal and glial glutamate transport systems in retinal ischaemia.
    Barnett NL; Pow DV; Bull ND
    Neurochem Int; 2001 Oct; 39(4):291-9. PubMed ID: 11551669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin protects C6 glioma cells from glutamate toxicity.
    Shinagawa S
    Neuroscience; 1994 Apr; 59(4):1043-50. PubMed ID: 7520131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance.
    Rauen T; Taylor WR; Kuhlbrodt K; Wiessner M
    Cell Tissue Res; 1998 Jan; 291(1):19-31. PubMed ID: 9394040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate transport by retinal Muller cells in glutamate/aspartate transporter-knockout mice.
    Sarthy VP; Pignataro L; Pannicke T; Weick M; Reichenbach A; Harada T; Tanaka K; Marc R
    Glia; 2005 Jan; 49(2):184-96. PubMed ID: 15390100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the effects of isomers of alpha-aminoadipic acid and 2-amino-4-phosphonobutyric acid on the light response of the müller glial cell and the electroretinogram.
    Zimmerman RP; Corfman TP
    Neuroscience; 1984 May; 12(1):77-84. PubMed ID: 6462455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are neuronal transporters relevant in retinal glutamate homeostasis?
    Pow DV; Barnett NL; Penfold P
    Neurochem Int; 2000; 37(2-3):191-8. PubMed ID: 10812204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia stimulates glutamate uptake in whole rat retinal cells in vitro.
    Payet O; Maurin L; Bonne C; Muller A
    Neurosci Lett; 2004 Feb; 356(2):148-50. PubMed ID: 14746885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.