BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 11284037)

  • 1. A classification efficiency test of spectral karyotyping and multiplex fluorescence in situ hybridization: identification of chromosome homologies between Homo sapiens and Hylobates leucogenys.
    Rens W; Yang F; O'Brien PC; Solanky N; Ferguson-Smith MA
    Genes Chromosomes Cancer; 2001 May; 31(1):65-74. PubMed ID: 11284037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed Hylobates lar karyotype defined by 25-color FISH and multicolor banding.
    Mrasek K; Heller A; Rubtsov N; Trifonov V; Starke H; Claussen U; Liehr T
    Int J Mol Med; 2003 Aug; 12(2):139-46. PubMed ID: 12851708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved chromosome segments in Hylobates hoolock revealed by human and H. leucogenys paint probes.
    Nie W; Rens W; Wang J; Yang F
    Cytogenet Cell Genet; 2001; 92(3-4):248-53. PubMed ID: 11435697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-species colour segmenting: a novel tool in human karyotype analysis.
    Müller S; O'Brien PC; Ferguson-Smith MA; Wienberg J
    Cytometry; 1998 Dec; 33(4):445-52. PubMed ID: 9845439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex-fluorescence in situ hybridization for chromosome karyotyping.
    Geigl JB; Uhrig S; Speicher MR
    Nat Protoc; 2006; 1(3):1172-84. PubMed ID: 17406400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting.
    Koehler U; Bigoni F; Wienberg J; Stanyon R
    Genomics; 1995 Nov; 30(2):287-92. PubMed ID: 8586429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Karyotyping human chromosomes by combinatorial multi-fluor FISH.
    Speicher MR; Gwyn Ballard S; Ward DC
    Nat Genet; 1996 Apr; 12(4):368-75. PubMed ID: 8630489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Analysis of complex chromosomal aberrations in patients with myelodysplastic syndromes using multiplex fluorescence in situ hybridization combined with whole chromosome painting].
    Chen LJ; Li JY; Xiao B; Zhu Y; Liu Q; Pan JL; Qiu HR; Fan L; Zhang SJ; Lu RN; Xu W; Xue YQ
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2007 Dec; 24(6):635-9. PubMed ID: 18067073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic reorganization and disrupted chromosomal synteny in the siamang (Hylobates syndactylus) revealed by fluorescence in situ hybridization.
    Koehler U; Arnold N; Wienberg J; Tofanelli S; Stanyon R
    Am J Phys Anthropol; 1995 May; 97(1):37-47. PubMed ID: 7645672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints.
    Huang L; Nesterenko A; Nie W; Wang J; Su W; Graphodatsky AS; Yang F
    Cytogenet Genome Res; 2008; 122(2):132-8. PubMed ID: 19096208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytogenetic analysis by chromosome painting.
    Carter NP
    Cytometry; 1994 Mar; 18(1):2-10. PubMed ID: 8082483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicolor Fluorescence In Situ Hybridization (FISH) approaches for simultaneous analysis of the entire human genome.
    Lee C; Rens W; Yang F
    Curr Protoc Hum Genet; 2001 May; Chapter 4():Unit4.9. PubMed ID: 18428283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A comparative chromosome map between human and Hylobates hoolock built by chromosome painting].
    Yu D; Yang F; Liu R
    Yi Chuan Xue Bao; 1997 Oct; 24(5):417-23. PubMed ID: 9494294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normalization of multicolor fluorescence in situ hybridization (M-FISH) images for improving color karyotyping.
    Wang YP; Castleman KR
    Cytometry A; 2005 Apr; 64(2):101-9. PubMed ID: 15729736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications.
    Ferguson-Smith MA
    Eur J Hum Genet; 1997; 5(5):253-65. PubMed ID: 9412781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral karyotyping analysis of head and neck squamous cell carcinoma.
    Singh B; Gogineni S; Goberdhan A; Sacks P; Shaha A; Shah J; Rao P
    Laryngoscope; 2001 Sep; 111(9):1545-50. PubMed ID: 11568603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicolour spectral karyotyping of mouse chromosomes.
    Liyanage M; Coleman A; du Manoir S; Veldman T; McCormack S; Dickson RB; Barlow C; Wynshaw-Boris A; Janz S; Wienberg J; Ferguson-Smith MA; Schröck E; Ried T
    Nat Genet; 1996 Nov; 14(3):312-5. PubMed ID: 8896561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human.
    Breen M; Thomas R; Binns MM; Carter NP; Langford CF
    Genomics; 1999 Oct; 61(2):145-55. PubMed ID: 10534400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of unidentified chromosome abnormalities in human neuroblastoma by spectral karyotyping (SKY).
    Cohen N; Betts DR; Trakhtenbrot L; Niggli FK; Amariglio N; Brok-Simoni F; Rechavi G; Meitar D
    Genes Chromosomes Cancer; 2001 Jul; 31(3):201-8. PubMed ID: 11391790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [From "monocolor" karyotype to "multicolor" karyotype: applications of M-Fish in hematology and oncology].
    Jaffray JY; Giollant M; Perissel B; Vago P
    Bull Cancer; 2002 Feb; 89(2):174-80. PubMed ID: 11888857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.