BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 11284705)

  • 1. The binding of bis-ANS to the isolated GroEL apical domain fragment induces the formation of a folding intermediate with increased hydrophobic surface not observed in tetradecameric GroEL.
    Smoot AL; Panda M; Brazil BT; Buckle AM; Fersht AR; Horowitz PM
    Biochemistry; 2001 Apr; 40(14):4484-92. PubMed ID: 11284705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic stability and folding of GroEL minichaperones.
    Golbik R; Zahn R; Harding SE; Fersht AR
    J Mol Biol; 1998 Feb; 276(2):505-15. PubMed ID: 9512719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoincorporation of 4,4'-bis(1-anilino-8-naphthalenesulfonic acid) into the apical domain of GroEL: specific information from a nonspecific probe.
    Seale JW; Martinez JL; Horowitz PM
    Biochemistry; 1995 Jun; 34(22):7443-9. PubMed ID: 7779787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
    White ZW; Fisher KE; Eisenstein E
    J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of a burst-phase intermediate formed in the folding of denatured D-glyceraldehyde-3-phosphate dehydrogenase by chaperonin 60 and 8-anilino-1-naphthalenesulphonic acid.
    Li XL; Lei XD; Cai H; Li J; Yang SL; Wang CC; Tsou CL
    Biochem J; 1998 Apr; 331 ( Pt 2)(Pt 2):505-11. PubMed ID: 9531491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure of hydrophobic surfaces on the chaperonin GroEL oligomer by protonation or modification of His-401.
    Gibbons DL; Horowitz PM
    J Biol Chem; 1995 Mar; 270(13):7335-40. PubMed ID: 7706275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein conformational changes induced by 1,1'-bis(4-anilino-5-naphthalenesulfonic acid): preferential binding to the molten globule of DnaK.
    Shi L; Palleros DR; Fink AL
    Biochemistry; 1994 Jun; 33(24):7536-46. PubMed ID: 8011619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic surfaces that are hidden in chaperonin Cpn60 can be exposed by formation of assembly-competent monomers or by ionic perturbation of the oligomer.
    Horowitz PM; Hua S; Gibbons DL
    J Biol Chem; 1995 Jan; 270(4):1535-42. PubMed ID: 7829481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual structure in urea-denatured chaperonin GroEL.
    Gorovits BM; Seale JW; Horowitz PM
    Biochemistry; 1995 Oct; 34(42):13928-33. PubMed ID: 7577988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfolding and disassembly of the chaperonin GroEL occurs via a tetradecameric intermediate with a folded equatorial domain.
    Chen J; Smith DL
    Biochemistry; 2000 Apr; 39(15):4250-8. PubMed ID: 10757973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoincorporation of fluorescent probe into GroEL: defining site of interaction.
    Seale JW; Brazil BT; Horowitz PM
    Methods Enzymol; 1998; 290():318-23. PubMed ID: 9534172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible oligomerization and denaturation of the chaperonin GroES.
    Seale JW; Gorovits BM; Ybarra J; Horowitz PM
    Biochemistry; 1996 Apr; 35(13):4079-83. PubMed ID: 8672442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible loop of beta 2-glycoprotein I domain V specifically interacts with hydrophobic ligands.
    Hong DP; Hagihara Y; Kato H; Goto Y
    Biochemistry; 2001 Jul; 40(27):8092-100. PubMed ID: 11434778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.
    Ybarra J; Horowitz PM
    J Biol Chem; 1995 Sep; 270(39):22962-7. PubMed ID: 7559433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urea-induced denaturation of beta-trypsin: an evidence for a molten globule state.
    Brumano MH; Oliveira MG
    Protein Pept Lett; 2004 Apr; 11(2):133-40. PubMed ID: 15078201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding intermediates of the prion protein stabilized by hydrostatic pressure and low temperature.
    Martins SM; Chapeaurouge A; Ferreira ST
    J Biol Chem; 2003 Dec; 278(50):50449-55. PubMed ID: 14525996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The anticodon-binding domain of tyrosyl-tRNA synthetase: state of folding and origin of the crystallographic disorder.
    Guez V; Nair S; Chaffotte A; Bedouelle H
    Biochemistry; 2000 Feb; 39(7):1739-47. PubMed ID: 10677223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration around the active site of rhodanese during urea-induced denaturation and its implications for folding.
    Bhattacharyya AM; Horowitz P
    J Biol Chem; 2000 May; 275(20):14860-4. PubMed ID: 10809729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid with alpha-crystallin.
    Sharma KK; Kaur H; Kumar GS; Kester K
    J Biol Chem; 1998 Apr; 273(15):8965-70. PubMed ID: 9535881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural plasticity and noncovalent substrate binding in the GroEL apical domain. A study using electrospay ionization mass spectrometry and fluorescence binding studies.
    Ashcroft AE; Brinker A; Coyle JE; Weber F; Kaiser M; Moroder L; Parsons MR; Jager J; Hartl UF; Hayer-Hartl M; Radford SE
    J Biol Chem; 2002 Sep; 277(36):33115-26. PubMed ID: 12065585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.