BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11284888)

  • 1. Evaluation of water and electrolyte transport of tubular epithelial cells under osmotic and hydraulic pressure for development of bioartificial tubules.
    Terashima M; Fujita Y; Sugano K; Asano M; Kagiwada N; Sheng Y; Nakamura S; Hasegawa A; Kakuta T; Saito A
    Artif Organs; 2001 Mar; 25(3):209-12. PubMed ID: 11284888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research into the development of a wearable bioartificial kidney with a continuous hemofilter and a bioartificial tubule device using tubular epithelial cells.
    Saito A
    Artif Organs; 2004 Jan; 28(1):58-63. PubMed ID: 14720290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of proliferation and functional differentiation of LLC-PK1 cells on porous polymer membranes for the development of a bioartificial renal tubule device.
    Sato Y; Terashima M; Kagiwada N; Tun T; Inagaki M; Kakuta T; Saito A
    Tissue Eng; 2005; 11(9-10):1506-15. PubMed ID: 16259605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcellular water transport and stability of expression in aquaporin 1-transfected LLC-PK1 cells in the development of a portable bioartificial renal tubule device.
    Fujita Y; Terashima M; Kakuta T; Itoh J; Tokimasa T; Brown D; Saito A
    Tissue Eng; 2004; 10(5-6):711-22. PubMed ID: 15265288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of long-term transport ability of a bioartificial renal tubule device using LLC-PK1 cells.
    Ozgen N; Terashima M; Aung T; Sato Y; Isoe C; Kakuta T; Saito A
    Nephrol Dial Transplant; 2004 Sep; 19(9):2198-207. PubMed ID: 15266032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcellular transport of creatinine in renal tubular epithelial cell line LLC-PK1.
    Urakami Y; Kimura N; Okuda M; Masuda S; Katsura T; Inui K
    Drug Metab Pharmacokinet; 2005 Jun; 20(3):200-5. PubMed ID: 15988122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Present status and perspective of the development of a bioartificial kidney for chronic renal failure patients.
    Saito A; Aung T; Sekiguchi K; Sato Y
    Ther Apher Dial; 2006 Aug; 10(4):342-7. PubMed ID: 16911187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of LLC-PK(1) cell overgrowth in a bioartificial renal tubule device using a MEK inhibitor, U0126.
    Inagaki M; Yokoyama TA; Sawada K; Duc VM; Kanai G; Lu J; Kakuta T; Saito A
    J Biotechnol; 2007 Oct; 132(1):57-64. PubMed ID: 17884223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport functions in a bioartificial kidney under uremic conditions.
    Uludag H; Ip TK; Aebischer P
    Int J Artif Organs; 1990 Feb; 13(2):93-7. PubMed ID: 2347662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of a transcellular oxalate transport mechanism in LLC-PK1 and MDCK cells cultured on porous supports.
    Verkoelen CF; Romijn JC; de Bruijn WC; Boevé ER; Cao LC; Schröder FH
    Scanning Microsc; 1993 Sep; 7(3):1031-8; discussion 1038-40. PubMed ID: 8146604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LLC-PK1 cells as a model system to study proximal tubule transport of water and other compounds relevant for renal stone disease.
    Verkoelen CF; Kok DJ; van der Boom BG; de Jonge HR; Schröder FH; Romijn JC
    Urol Res; 1999 Apr; 27(2):109-15. PubMed ID: 10424392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of tetraethylammonium transport in the kidney epithelial cell line, LLC-PK1.
    Tomita Y; Otsuki Y; Hashimoto Y; Inui K
    Pharm Res; 1997 Sep; 14(9):1236-40. PubMed ID: 9327454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of quinolone antibacterial drugs by human P-glycoprotein expressed in a kidney epithelial cell line, LLC-PK1.
    Ito T; Yano I; Tanaka K; Inui KI
    J Pharmacol Exp Ther; 1997 Aug; 282(2):955-60. PubMed ID: 9262363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular control of membrane permeability. Implications for a bioartificial renal tubule.
    Ip TK; Aebischer P; Galletti PM
    ASAIO Trans; 1988; 34(3):351-5. PubMed ID: 3196532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of paraquat by a renal epithelial cell line, MDCK.
    Chan BS; Lazzaro VA; Seale JP; Duggin GG
    Ren Fail; 1997 Nov; 19(6):745-51. PubMed ID: 9415931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of taurine transport in cultured renal epithelial cell lines: asymmetric polarity of proximal and distal cell lines.
    Jones DP; Miller LA; Budreau A; Chesney RW
    Adv Exp Med Biol; 1992; 315():405-11. PubMed ID: 1509959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of bioartificial kidneys.
    Saito A
    Nephrology (Carlton); 2003 Oct; 8 Suppl():S10-5. PubMed ID: 15012685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of LLC-PK1 kidney epithelial cells as an in vitro model for studying renal tubular reabsorption of protein drugs.
    Takakura Y; Morita T; Fujikawa M; Hayashi M; Sezaki H; Hashida M; Borchardt RT
    Pharm Res; 1995 Dec; 12(12):1968-72. PubMed ID: 8786975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of water flux in a bioartificial kidney.
    Uludag H; Panol G; Aebischer P
    ASAIO Trans; 1989; 35(3):523-7. PubMed ID: 2597524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct characteristics of transcellular transport between nicotine and tetraethylammonium in LLC-PK1 cells.
    Takami K; Saito H; Okuda M; Takano M; Inui KI
    J Pharmacol Exp Ther; 1998 Aug; 286(2):676-80. PubMed ID: 9694920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.