These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 11285015)

  • 41. Functional imaging of the intraparietal cortex during saccades to visual and memorized targets.
    Bakola S; Gregoriou GG; Moschovakis AK; Savaki HE
    Neuroimage; 2006 Jul; 31(4):1637-49. PubMed ID: 16624587
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential roles of the frontal and parietal cortices in the control of saccades.
    Bender J; Tark KJ; Reuter B; Kathmann N; Curtis CE
    Brain Cogn; 2013 Oct; 83(1):1-9. PubMed ID: 23867736
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional neuroanatomy of anticipatory behavior: dissociation between sensory-driven and memory-driven systems.
    Simó LS; Krisky CM; Sweeney JA
    Cereb Cortex; 2005 Dec; 15(12):1982-91. PubMed ID: 15758195
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple reference frames for saccadic planning in the human parietal cortex.
    Pertzov Y; Avidan G; Zohary E
    J Neurosci; 2011 Jan; 31(3):1059-68. PubMed ID: 21248131
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cortical control of ocular saccades in humans: a model for motricity.
    Pierrot-Deseilligny C; Müri RM; Ploner CJ; Gaymard B; Rivaud-Péchoux S
    Prog Brain Res; 2003; 142():3-17. PubMed ID: 12693251
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Directional selectivity of BOLD activity in human posterior parietal cortex for memory-guided double-step saccades.
    Medendorp WP; Goltz HC; Vilis T
    J Neurophysiol; 2006 Mar; 95(3):1645-55. PubMed ID: 16291802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The neural basis of parallel saccade programming: an fMRI study.
    Hu Y; Walker R
    J Cogn Neurosci; 2011 Nov; 23(11):3669-80. PubMed ID: 21563883
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TMS over human frontal eye fields disrupts trans-saccadic memory of multiple objects.
    Prime SL; Vesia M; Crawford JD
    Cereb Cortex; 2010 Apr; 20(4):759-72. PubMed ID: 19641017
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Saccade induced cortical activation in patients with post-stroke visual field defects.
    Nelles G; de Greiff A; Pscherer A; Stude P; Forsting M; Hufnagel A; Gerhard H; Esser J; Diener HC
    J Neurol; 2007 Sep; 254(9):1244-52. PubMed ID: 17694385
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI.
    Petit L; Clark VP; Ingeholm J; Haxby JV
    J Neurophysiol; 1997 Jun; 77(6):3386-90. PubMed ID: 9212283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Where left becomes right: a magnetoencephalographic study of sensorimotor transformation for antisaccades.
    Moon SY; Barton JJ; Mikulski S; Polli FE; Cain MS; Vangel M; Hämäläinen MS; Manoach DS
    Neuroimage; 2007 Jul; 36(4):1313-23. PubMed ID: 17537647
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Processing of retinal and extraretinal signals for memory-guided saccades during smooth pursuit.
    Blohm G; Missal M; Lefèvre P
    J Neurophysiol; 2005 Mar; 93(3):1510-22. PubMed ID: 15483070
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential cortical activation during voluntary and reflexive saccades in man.
    Mort DJ; Perry RJ; Mannan SK; Hodgson TL; Anderson E; Quest R; McRobbie D; McBride A; Husain M; Kennard C
    Neuroimage; 2003 Feb; 18(2):231-46. PubMed ID: 12595178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of the parietal cortex in the neural processing of saccadic eye movements.
    Bisley JW; Goldberg ME
    Adv Neurol; 2003; 93():141-57. PubMed ID: 12894406
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of fixation and saccades during an anti-saccade task: an investigation in humans with chronic lesions of oculomotor cortex.
    Machado L; Rafal RD
    Exp Brain Res; 2004 May; 156(1):55-63. PubMed ID: 14685809
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of reversible inactivation of macaque lateral intraparietal area on visual and memory saccades.
    Li CS; Mazzoni P; Andersen RA
    J Neurophysiol; 1999 Apr; 81(4):1827-38. PubMed ID: 10200217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Location of the human posterior eye field with functional magnetic resonance imaging.
    Müri RM; Iba-Zizen MT; Derosier C; Cabanis EA; Pierrot-Deseilligny C
    J Neurol Neurosurg Psychiatry; 1996 Apr; 60(4):445-8. PubMed ID: 8774415
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The dorsomedial frontal cortex of the macaca monkey: fixation and saccade-related activity.
    Bon L; Lucchetti C
    Exp Brain Res; 1992; 89(3):571-80. PubMed ID: 1644122
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging.
    Darby DG; Nobre AC; Thangaraj V; Edelman R; Mesulam MM; Warach S
    Neuroimage; 1996 Feb; 3(1):53-62. PubMed ID: 9345475
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Guided saccades modulate object and face-specific activity in the fusiform gyrus.
    Morris JP; McCarthy G
    Hum Brain Mapp; 2007 Aug; 28(8):691-702. PubMed ID: 17133398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.