These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11285481)

  • 1. Characterization of constitutive and putative differentially expressed mRNAs by means of expressed sequence tags, differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR from the sand fly vector Lutzomyia longipalpis.
    Ramalho-Ortigão JM; Temporal P; de Oliveira SM; Barbosa AF; Vilela ML; Rangel EF; Brazil RP; Traub-Cseko YM
    Mem Inst Oswaldo Cruz; 2001 Jan; 96(1):105-11. PubMed ID: 11285481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies.
    Jochim RC; Teixeira CR; Laughinghouse A; Mu J; Oliveira F; Gomes RB; Elnaiem DE; Valenzuela JG
    BMC Genomics; 2008 Jan; 9():15. PubMed ID: 18194529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EST sequencing of blood-fed and Leishmania-infected midgut of Lutzomyia longipalpis, the principal visceral leishmaniasis vector in the Americas.
    Pitaluga AN; Beteille V; Lobo AR; Ortigão-Farias JR; Dávila AM; Souza AA; Ramalho-Ortigão JM; Traub-Cseko YM
    Mol Genet Genomics; 2009 Sep; 282(3):307-17. PubMed ID: 19565270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) male reproductive organs.
    Azevedo RV; Dias DB; Bretãs JA; Mazzoni CJ; Souza NA; Albano RM; Wagner G; Davila AM; Peixoto AA
    PLoS One; 2012; 7(4):e34495. PubMed ID: 22496818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of a V-ATPase subunit C from the American visceral leishmaniasis vector Lutzomyia longipalpis modulated during development and blood ingestion.
    Ramalho-Ortigão JM; Pitaluga AN; Telleria EL; Marques C; Souza AA; Traub-Cseko YM
    Mem Inst Oswaldo Cruz; 2007 Jun; 102(4):509-15. PubMed ID: 17607496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive and blood meal-induced trypsin genes in Lutzomyia longipalpis.
    Telleria EL; Pitaluga AN; Ortigão-Farias JR; de Araújo AP; Ramalho-Ortigão JM; Traub-Cseko YM
    Arch Insect Biochem Physiol; 2007 Oct; 66(2):53-63. PubMed ID: 17879236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leishmania infection induces a limited differential gene expression in the sand fly midgut.
    Coutinho-Abreu IV; Serafim TD; Meneses C; Kamhawi S; Oliveira F; Valenzuela JG
    BMC Genomics; 2020 Sep; 21(1):608. PubMed ID: 32887545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment.
    Myšková J; Dostálová A; Pěničková L; Halada P; Bates PA; Volf P
    Parasit Vectors; 2016 Jul; 9(1):413. PubMed ID: 27457627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular identification of Lutzomyia migonei (Diptera: Psychodidae) as a potential vector for Leishmania infantum (Kinetoplastida: Trypanosomatidae).
    Rodrigues AC; Melo LM; Magalhães RD; de Moraes NB; de Souza Júnior AD; Bevilaqua CM
    Vet Parasitol; 2016 Apr; 220():28-32. PubMed ID: 26995718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission blocking sugar baits for the control of Leishmania development inside sand flies using environmentally friendly beta-glycosides and their aglycones.
    Ferreira TN; Pita-Pereira D; Costa SG; Brazil RP; Moraes CS; Díaz-Albiter HM; Genta FA
    Parasit Vectors; 2018 Nov; 11(1):614. PubMed ID: 30501613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of ESTs from Lutzomyia longipalpis sand flies and their contribution toward understanding the insect-parasite relationship.
    Dillon RJ; Ivens AC; Churcher C; Holroyd N; Quail MA; Rogers ME; Soares MB; Bonaldo MF; Casavant TL; Lehane MJ; Bates PA
    Genomics; 2006 Dec; 88(6):831-840. PubMed ID: 16887324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhythmic expression of the cycle gene in a hematophagous insect vector.
    Meireles-Filho AC; Amoretty PR; Souza NA; Kyriacou CP; Peixoto AA
    BMC Mol Biol; 2006 Oct; 7():38. PubMed ID: 17069657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random amplified polymorphic DNA (RAPD) analysis of Lutzomyia longipalpis laboratory populations.
    Dias ES; Fortes-Dias CL; Stiteler JM; Perkins PV; Lawyer PG
    Rev Inst Med Trop Sao Paulo; 1998; 40(1):49-53. PubMed ID: 9713138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis.
    Telleria EL; Sant'Anna MR; Alkurbi MO; Pitaluga AN; Dillon RJ; Traub-Csekö YM
    Parasit Vectors; 2013 Jan; 6():12. PubMed ID: 23311993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic structure of natural populations of the sand fly Lutzomyia longipalpis (Diptera: Psychodidae) from the Brazilian northeastern region.
    de Queiroz Balbino V; Coutinho-Abreu IV; Sonoda IV; Melo MA; de Andrade PP; de Castro JA; Rebêlo JM; Carvalho SM; Ramalho-Ortigão M
    Acta Trop; 2006 Apr; 98(1):15-24. PubMed ID: 16480941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time PCR to assess the Leishmania load in Lutzomyia longipalpis sand flies: screening of target genes and assessment of quantitative methods.
    Bezerra-Vasconcelos DR; Melo LM; Albuquerque ÉS; Luciano MC; Bevilaqua CM
    Exp Parasitol; 2011 Nov; 129(3):234-9. PubMed ID: 21864530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecology, feeding and natural infection by Leishmania spp. of phlebotomine sand flies in an area of high incidence of American tegumentary leishmaniasis in the municipality of Rio Branco, Acre, Brazil.
    de Ávila MM; Brilhante AF; de Souza CF; Bevilacqua PD; Galati EAB; Brazil RP
    Parasit Vectors; 2018 Jan; 11(1):64. PubMed ID: 29373995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The characterization of the Phlebotomus papatasi transcriptome.
    Abrudan J; Ramalho-Ortigão M; O'Neil S; Stayback G; Wadsworth M; Bernard M; Shoue D; Emrich S; Lawyer P; Kamhawi S; Rowton ED; Lehane MJ; Bates PA; Valenzeula JG; Tomlinson C; Appelbaum E; Moeller D; Thiesing B; Dillon R; Clifton S; Lobo NF; Wilson RK; Collins FH; McDowell MA
    Insect Mol Biol; 2013 Apr; 22(2):211-32. PubMed ID: 23398403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of Llchit1, a midgut chitinase cDNA from the leishmaniasis vector Lutzomyia longipalpis.
    Ramalho-Ortigão JM; Traub-Csekö YM
    Insect Biochem Mol Biol; 2003 Mar; 33(3):279-87. PubMed ID: 12609513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis.
    Charlab R; Valenzuela JG; Rowton ED; Ribeiro JM
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):15155-60. PubMed ID: 10611354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.