BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11285828)

  • 1. [Evaluation of performance and blood compatibility of polyethersulfone hollow fiber plasma separator].
    Liu T; Yu X; Zhao C; Lu Z; Cheng L; Meng W; Yue Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Sep; 17(3):249-54. PubMed ID: 11285828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of a polyethersulfone hollow fiber plasma separator by animal experiment.
    Zhao CS; Liu T; Lu ZP; Cheng LP; Huang J
    Artif Organs; 2001 Jan; 25(1):60-3. PubMed ID: 11167562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The sieving performance of a new polyethersulfone hollow fiber plasma fractionation membrane].
    Zhao C; Liu T; Lu Z; Cheng L; Yu X; Yue Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Mar; 18(1):5-8. PubMed ID: 11332114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of plasma fractionation membrane.
    Zhao C; Zhang X; Yue YL
    Ther Apher; 2002 Feb; 6(1):86-8. PubMed ID: 11886582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximal flow rates and sieving coefficients in different plasmafilters: effects of increased membrane surfaces and effective length under standardized in vitro conditions.
    Unger JK; Haltern C; Dohmen B; Rossaint R
    J Clin Apher; 2002; 17(4):190-8. PubMed ID: 12494412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excimer laser channel creation in polyethersulfone hollow fibers for compartmentalized in vitro neuronal cell culture scaffolds.
    Brayfield CA; Marra KG; Leonard JP; Tracy Cui X; Gerlach JC
    Acta Biomater; 2008 Mar; 4(2):244-55. PubMed ID: 18060849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of blood-compatible hollow fibers from a polymer alloy composed of polysulfone and 2-methacryloyloxyethyl phosphorylcholine polymer.
    Hasegawa T; Iwasaki Y; Ishihara K
    J Biomed Mater Res; 2002; 63(3):333-41. PubMed ID: 12115766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved hemodialysis with hemocompatible polyethersulfone hollow fiber membranes: In vitro performance.
    Verma SK; Modi A; Singh AK; Teotia R; Bellare J
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1286-1298. PubMed ID: 28636168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure and characteristics of polypropylene hollow fiber membrane plasma separator.
    Sakai M; Matsunami S
    Ther Apher Dial; 2003 Feb; 7(1):69-72. PubMed ID: 12921118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does an alteration of dialyzer design and geometry affect biocompatibility parameters?
    Opatrný K; Krouzzecký A; Polanská K; Mares J; Tomsů M; Bowry SK; Vienken J
    Hemodial Int; 2006 Apr; 10(2):201-8. PubMed ID: 16623675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) doping improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes.
    Modi A; Verma SK; Bellare J
    J Colloid Interface Sci; 2017 Oct; 504():86-100. PubMed ID: 28527829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of plasma from whole blood by membrane filtration in oscillatory flows.
    Stairmand JW; Bellhouse BJ; Jamal Z; Lewis RW; Urban JP; Entwistle CC
    Life Support Syst; 1986; 4(3):193-204. PubMed ID: 3784601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated plasma exchanges in calves using a new hollow fiber plasma separator.
    Mieszala J; Purcell A; Robb M; Lake W
    Trans Am Soc Artif Intern Organs; 1982; 28():378-81. PubMed ID: 7164264
    [No Abstract]   [Full Text] [Related]  

  • 14. Development of a fluorinated polyimide hollow fiber for medical devices.
    Kawakami H; Kanamori T; Kubota S
    J Artif Organs; 2003; 6(2):124-9. PubMed ID: 14598113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes.
    Unger RE; Peters K; Huang Q; Funk A; Paul D; Kirkpatrick CJ
    Biomaterials; 2005 Jun; 26(17):3461-9. PubMed ID: 15621235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on clotting and hemolysis characteristics of heparin-immobilized polyether sulfones biomembrane.
    Hou C; Yuan Q; Huo D; Zheng S; Zhan D
    J Biomed Mater Res A; 2008 Jun; 85(3):847-52. PubMed ID: 17876803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BSA-modified polyethersulfone membrane: preparation, characterization and biocompatibility.
    Liu Z; Deng X; Wang M; Chen J; Zhang A; Gu Z; Zhao C
    J Biomater Sci Polym Ed; 2009; 20(3):377-97. PubMed ID: 19192362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro hemocompatibility of albumin-heparin multilayer coatings on polyethersulfone prepared by the layer-by-layer technique.
    Sperling C; Houska M; Brynda E; Streller U; Werner C
    J Biomed Mater Res A; 2006 Mar; 76(4):681-9. PubMed ID: 16302224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new type of blood component collector: plasma separation using gravity without any electrical devices.
    Sekiguchi S; Takahashi TA; Yamamoto S; Hasegawa H; Takenaka Y; Suemitsu J; Fukumi H
    Vox Sang; 1990; 58(3):182-7. PubMed ID: 2339526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.