These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11285890)

  • 1. Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture.
    Boesch DF; Brinsfield RB; Magnien RE
    J Environ Qual; 2001; 30(2):303-20. PubMed ID: 11285890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of management strategies for reducing nitrogen loadings to four US estuaries.
    Whitall D; Castro M; Driscoll C
    Sci Total Environ; 2004 Oct; 333(1-3):25-36. PubMed ID: 15364517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Managing agricultural phosphorus for water quality: lessons from the USA and China.
    Sharpley A; Wang X
    J Environ Sci (China); 2014 Sep; 26(9):1770-82. PubMed ID: 25193824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient reduction policies and management strategies of the Chesapeake Bay water quality restoration program.
    Randall CW
    Water Sci Technol; 2001; 44(1):25-32. PubMed ID: 11496674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region.
    Lefcheck JS; Orth RJ; Dennison WC; Wilcox DJ; Murphy RR; Keisman J; Gurbisz C; Hannam M; Landry JB; Moore KA; Patrick CJ; Testa J; Weller DE; Batiuk RA
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3658-3662. PubMed ID: 29507225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient limitation of phytoplankton in three tributaries of Chesapeake Bay: Detecting responses following nutrient reductions.
    Zhang Q; Fisher TR; Buchanan C; Gustafson AB; Karrh RR; Murphy RR; Testa JM; Tian R; Tango PJ
    Water Res; 2022 Nov; 226():119099. PubMed ID: 36302271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agricultural nutrient inputs to rivers and groundwaters in the UK: policy, environmental management and research needs.
    Withers PJ; Lord EI
    Sci Total Environ; 2002 Jan; 282-283():9-24. PubMed ID: 11852908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water protection in the Baltic Sea and the Chesapeake Bay: institutions, policies and efficiency.
    Iho A; Ribaudo M; Hyytiäinen K
    Mar Pollut Bull; 2015 Apr; 93(1-2):81-93. PubMed ID: 25752532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat.
    Ruhl HA; Rybicki NB
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16566-70. PubMed ID: 20823243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment.
    Camargo JA; Alonso A
    Environ Int; 2006 Aug; 32(6):831-49. PubMed ID: 16781774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the health of the Chesapeake Bay: toward integration and prediction.
    Boesch DF
    Environ Res; 2000 Feb; 82(2):134-42. PubMed ID: 10662527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetland management to reduce Baltic Sea eutrophication.
    Paludan C; Alexeyev FE; Drews H; Fleischer S; Fuglsang A; Kindt T; Kowalski P; Moos M; Radlowki A; Stromfors G; Westberg V; Wolter K
    Water Sci Technol; 2002; 45(9):87-94. PubMed ID: 12079128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition, sources, and bioavailability of nitrogen in a longitudinal gradient from freshwater to estuarine waters.
    Jani J; Toor GS
    Water Res; 2018 Jun; 137():344-354. PubMed ID: 29571112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling diffuse nutrient flow in eutrophication control scenarios.
    Arheimer B; Andersson L; Larsson M; Lindström G; Olsson J; Pers BC
    Water Sci Technol; 2004; 49(3):37-45. PubMed ID: 15053097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen in aquatic ecosystems.
    Rabalais NN
    Ambio; 2002 Mar; 31(2):102-12. PubMed ID: 12077998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Historical accumulation of N and P and sources of organic matter and N in sediment in an agricultural reservoir in Northern China.
    Ni Z; Wang S; Chu Z; Jin X
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9951-64. PubMed ID: 25663341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating cumulative effects of anthropogenic inputs in Prince Edward Island estuaries using the mummichog (Fundulus heteroclitus).
    Finley MA; Courtenay SC; Teather KL; Hewitt LM; Holdway DA; Hogan NS; van den Heuvel MR
    Integr Environ Assess Manag; 2013 Jul; 9(3):496-507. PubMed ID: 23307421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of eutrophication in estuaries: pressure-state-response and nitrogen source apportionment.
    Whitall D; Bricker S; Ferreira J; Nobre AM; Simas T; Silva M
    Environ Manage; 2007 Oct; 40(4):678-90. PubMed ID: 17661131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental response of an Irish estuary to changing land management practices.
    Ní Longphuirt S; O'Boyle S; Stengel DB
    Sci Total Environ; 2015 Jul; 521-522():388-99. PubMed ID: 25863317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Major point and nonpoint sources of nutrient pollution to surface water have declined throughout the Chesapeake Bay watershed.
    Sabo RD; Sullivan B; Wu C; Trentacoste E; Zhang Q; Shenk GW; Bhatt G; Linker LC
    Environ Res Commun; 2022 May; 4(4):1-11. PubMed ID: 37089436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.