These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 11285930)
1. Hydrologic influence on stability of organic phosphorus in wetland detritus. Pant HK; Reddy KR J Environ Qual; 2001; 30(2):668-74. PubMed ID: 11285930 [TBL] [Abstract][Full Text] [Related]
2. Response of biogeochemical indicators to a drawdown and subsequent reflood. Corstanje R; Reddy KR J Environ Qual; 2004; 33(6):2357-66. PubMed ID: 15537959 [TBL] [Abstract][Full Text] [Related]
3. Soil profile distribution of phosphorus and other nutrients following wetland conversion to beef cattle pasture. Sigua GC; Kang WJ; Coleman SW J Environ Qual; 2006; 35(6):2374-82. PubMed ID: 17071908 [TBL] [Abstract][Full Text] [Related]
4. Organic phosphorus sequestration in subtropical treatment wetlands. Turner BL; Newman S; Newman JM Environ Sci Technol; 2006 Feb; 40(3):727-33. PubMed ID: 16509310 [TBL] [Abstract][Full Text] [Related]
5. Influence of Vegetation on Long-term Phosphorus Sequestration in Subtropical Treatment Wetlands. Bhomia RK; Reddy KR J Environ Qual; 2018 Mar; 47(2):361-370. PubMed ID: 29634798 [TBL] [Abstract][Full Text] [Related]
6. Nitrification and denitrification rates of Everglades wetland soils along a phosphorus-impacted gradient. White JR; Reddy KR J Environ Qual; 2003; 32(6):2436-43. PubMed ID: 14674571 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability of organic phosphorus in a submerged aquatic vegetation-dominated treatment wetland. Pant HK; Reddy KR; Dierberg FE J Environ Qual; 2002; 31(5):1748-56. PubMed ID: 12371195 [TBL] [Abstract][Full Text] [Related]
8. Peat Accretion and N, P, and Organic C Accumulation in Nutrient-Enriched and Unenriched Everglades Peatlands. Craft CB; Richardson CJ Ecol Appl; 1993 Aug; 3(3):446-458. PubMed ID: 27759248 [TBL] [Abstract][Full Text] [Related]
9. Reducing phosphorus flux from organic soils in surface flow treatment wetlands. Lindstrom SM; White JR Chemosphere; 2011 Oct; 85(4):625-9. PubMed ID: 21802114 [TBL] [Abstract][Full Text] [Related]
10. Responses of leaf carbon, nitrogen, and phosphorus stoichiometry of Zhao L; Ma X; Liu HQ; Xiong YH; Guo XL; Li LP; Dong LQ; Zhang K Ying Yong Sheng Tai Xue Bao; 2021 Jul; 32(7):2426-2432. PubMed ID: 34313060 [TBL] [Abstract][Full Text] [Related]
11. Temperature effects in treatment wetlands. Kadlec RH; Reddy KR Water Environ Res; 2001; 73(5):543-57. PubMed ID: 11765990 [TBL] [Abstract][Full Text] [Related]
12. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry. Turner BL; Newman S; Reddy KR Environ Sci Technol; 2006 May; 40(10):3349-54. PubMed ID: 16749704 [TBL] [Abstract][Full Text] [Related]
13. Linking phosphorus sequestration to carbon humification in wetland soils by 31P and 13C NMR spectroscopy. Hamdan R; El-Rifai HM; Cheesman AW; Turner BL; Reddy KR; Cooper WT Environ Sci Technol; 2012 May; 46(9):4775-82. PubMed ID: 22423890 [TBL] [Abstract][Full Text] [Related]
14. Fundamental processes within natural and constructed wetland ecosystems: short-term versus long-term objectives. Wetzel RG Water Sci Technol; 2001; 44(11-12):1-8. PubMed ID: 11804079 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of phosphorus retention in a South Florida treatment wetland. Nungesser MK; Chimney MJ Water Sci Technol; 2001; 44(11-12):109-15. PubMed ID: 11804081 [TBL] [Abstract][Full Text] [Related]
16. Phosphorus transformations during decomposition of wetland macrophytes. Cheesman AW; Turner BL; Inglett PW; Reddy KR Environ Sci Technol; 2010 Dec; 44(24):9265-71. PubMed ID: 21090603 [TBL] [Abstract][Full Text] [Related]
17. [Mobilization and transformation of phosphorus from water-soil interface of flooded soil]. Tian J; Liu L; Ding HS; Chen T Huan Jing Ke Xue; 2008 Jul; 29(7):1818-23. PubMed ID: 18828360 [TBL] [Abstract][Full Text] [Related]