These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 11286307)
1. Optimizing cardiac energy metabolism: how can fatty acid and carbohydrate metabolism be manipulated? Lopaschuk GD Coron Artery Dis; 2001 Feb; 12 Suppl 1():S8-11. PubMed ID: 11286307 [TBL] [Abstract][Full Text] [Related]
2. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Lopaschuk GD; Barr R; Thomas PD; Dyck JR Circ Res; 2003 Aug; 93(3):e33-7. PubMed ID: 12869392 [TBL] [Abstract][Full Text] [Related]
3. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298 [TBL] [Abstract][Full Text] [Related]
4. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Kantor PF; Lucien A; Kozak R; Lopaschuk GD Circ Res; 2000 Mar; 86(5):580-8. PubMed ID: 10720420 [TBL] [Abstract][Full Text] [Related]
5. Trimetazidine normalizes postischemic function of hypertrophied rat hearts. Saeedi R; Grist M; Wambolt RB; Bescond-Jacquet A; Lucien A; Allard MF J Pharmacol Exp Ther; 2005 Jul; 314(1):446-54. PubMed ID: 15840766 [TBL] [Abstract][Full Text] [Related]
6. Metabolic energy metabolism in diabetes: therapeutic implications. Pogatsa G Coron Artery Dis; 2001 Feb; 12 Suppl 1():S29-33. PubMed ID: 11286305 [TBL] [Abstract][Full Text] [Related]
7. The effects of chronic trimetazidine treatment on mechanical function and fatty acid oxidation in diabetic rat hearts. Onay-Besikci A; Guner S; Arioglu E; Ozakca I; Ozcelikay AT; Altan VM Can J Physiol Pharmacol; 2007 May; 85(5):527-35. PubMed ID: 17632588 [TBL] [Abstract][Full Text] [Related]
8. Targets for modulation of fatty acid oxidation in the heart. Lopaschuk GD Curr Opin Investig Drugs; 2004 Mar; 5(3):290-4. PubMed ID: 15083595 [TBL] [Abstract][Full Text] [Related]
9. Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism. Lopaschuk GD Am J Cardiol; 1998 Sep; 82(5A):14K-17K. PubMed ID: 9737481 [TBL] [Abstract][Full Text] [Related]
10. The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. MacInnes A; Fairman DA; Binding P; Rhodes Ja; Wyatt MJ; Phelan A; Haddock PS; Karran EH Circ Res; 2003 Aug; 93(3):e26-32. PubMed ID: 12869391 [TBL] [Abstract][Full Text] [Related]
11. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion. Wang P; Fraser H; Lloyd SG; McVeigh JJ; Belardinelli L; Chatham JC J Pharmacol Exp Ther; 2007 Apr; 321(1):213-20. PubMed ID: 17202401 [TBL] [Abstract][Full Text] [Related]
12. Optimizing cardiac fatty acid and glucose metabolism as an approach to treating heart failure. Lopaschuk GD Semin Cardiothorac Vasc Anesth; 2006 Sep; 10(3):228-30. PubMed ID: 16959756 [TBL] [Abstract][Full Text] [Related]
13. Early administration of trimetazidine may prevent or ameliorate diabetic cardiomyopathy. Wenmeng W; Qizhu T Med Hypotheses; 2011 Feb; 76(2):181-3. PubMed ID: 20932648 [TBL] [Abstract][Full Text] [Related]
15. Energetic myocardial metabolism and oxidative stress: let's make them our friends in the fight against heart failure. Scolletta S; Biagioli B Biomed Pharmacother; 2010 Mar; 64(3):203-7. PubMed ID: 19954925 [TBL] [Abstract][Full Text] [Related]
16. Metabolic therapy for the treatment of ischemic heart disease: reality and expectations. Wang W; Lopaschuk GD Expert Rev Cardiovasc Ther; 2007 Nov; 5(6):1123-34. PubMed ID: 18035928 [TBL] [Abstract][Full Text] [Related]
17. Cardioprotective effects of trimetazidine: a review. Marzilli M Curr Med Res Opin; 2003; 19(7):661-72. PubMed ID: 14606990 [TBL] [Abstract][Full Text] [Related]
18. ["Persistent" angina: rationale for a metabolic approach]. Marzilli M Ital Heart J; 2004 Mar; 5 Suppl 2():37S-41S. PubMed ID: 15074776 [TBL] [Abstract][Full Text] [Related]
19. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury. Dyck JR; Hopkins TA; Bonnet S; Michelakis ED; Young ME; Watanabe M; Kawase Y; Jishage K; Lopaschuk GD Circulation; 2006 Oct; 114(16):1721-8. PubMed ID: 17030679 [TBL] [Abstract][Full Text] [Related]
20. Cardiac energetics during ischaemia and the rationale for metabolic interventions. Stanley WC Coron Artery Dis; 2001 Feb; 12 Suppl 1():S3-7. PubMed ID: 11286306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]