BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 11286307)

  • 1. Optimizing cardiac energy metabolism: how can fatty acid and carbohydrate metabolism be manipulated?
    Lopaschuk GD
    Coron Artery Dis; 2001 Feb; 12 Suppl 1():S8-11. PubMed ID: 11286307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase.
    Lopaschuk GD; Barr R; Thomas PD; Dyck JR
    Circ Res; 2003 Aug; 93(3):e33-7. PubMed ID: 12869392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.
    Kantor PF; Lucien A; Kozak R; Lopaschuk GD
    Circ Res; 2000 Mar; 86(5):580-8. PubMed ID: 10720420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trimetazidine normalizes postischemic function of hypertrophied rat hearts.
    Saeedi R; Grist M; Wambolt RB; Bescond-Jacquet A; Lucien A; Allard MF
    J Pharmacol Exp Ther; 2005 Jul; 314(1):446-54. PubMed ID: 15840766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic energy metabolism in diabetes: therapeutic implications.
    Pogatsa G
    Coron Artery Dis; 2001 Feb; 12 Suppl 1():S29-33. PubMed ID: 11286305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of chronic trimetazidine treatment on mechanical function and fatty acid oxidation in diabetic rat hearts.
    Onay-Besikci A; Guner S; Arioglu E; Ozakca I; Ozcelikay AT; Altan VM
    Can J Physiol Pharmacol; 2007 May; 85(5):527-35. PubMed ID: 17632588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targets for modulation of fatty acid oxidation in the heart.
    Lopaschuk GD
    Curr Opin Investig Drugs; 2004 Mar; 5(3):290-4. PubMed ID: 15083595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism.
    Lopaschuk GD
    Am J Cardiol; 1998 Sep; 82(5A):14K-17K. PubMed ID: 9737481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.
    MacInnes A; Fairman DA; Binding P; Rhodes Ja; Wyatt MJ; Phelan A; Haddock PS; Karran EH
    Circ Res; 2003 Aug; 93(3):e26-32. PubMed ID: 12869391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion.
    Wang P; Fraser H; Lloyd SG; McVeigh JJ; Belardinelli L; Chatham JC
    J Pharmacol Exp Ther; 2007 Apr; 321(1):213-20. PubMed ID: 17202401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing cardiac fatty acid and glucose metabolism as an approach to treating heart failure.
    Lopaschuk GD
    Semin Cardiothorac Vasc Anesth; 2006 Sep; 10(3):228-30. PubMed ID: 16959756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early administration of trimetazidine may prevent or ameliorate diabetic cardiomyopathy.
    Wenmeng W; Qizhu T
    Med Hypotheses; 2011 Feb; 76(2):181-3. PubMed ID: 20932648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism].
    Lopaschuk GD
    Presse Med; 1998 Dec; 27(39):2100-4. PubMed ID: 9893703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic myocardial metabolism and oxidative stress: let's make them our friends in the fight against heart failure.
    Scolletta S; Biagioli B
    Biomed Pharmacother; 2010 Mar; 64(3):203-7. PubMed ID: 19954925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic therapy for the treatment of ischemic heart disease: reality and expectations.
    Wang W; Lopaschuk GD
    Expert Rev Cardiovasc Ther; 2007 Nov; 5(6):1123-34. PubMed ID: 18035928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardioprotective effects of trimetazidine: a review.
    Marzilli M
    Curr Med Res Opin; 2003; 19(7):661-72. PubMed ID: 14606990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ["Persistent" angina: rationale for a metabolic approach].
    Marzilli M
    Ital Heart J; 2004 Mar; 5 Suppl 2():37S-41S. PubMed ID: 15074776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury.
    Dyck JR; Hopkins TA; Bonnet S; Michelakis ED; Young ME; Watanabe M; Kawase Y; Jishage K; Lopaschuk GD
    Circulation; 2006 Oct; 114(16):1721-8. PubMed ID: 17030679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac energetics during ischaemia and the rationale for metabolic interventions.
    Stanley WC
    Coron Artery Dis; 2001 Feb; 12 Suppl 1():S3-7. PubMed ID: 11286306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.