BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 11286549)

  • 1. Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites.
    Anderson JD; Lowary PT; Widom J
    J Mol Biol; 2001 Apr; 307(4):977-85. PubMed ID: 11286549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes.
    Polach KJ; Lowary PT; Widom J
    J Mol Biol; 2000 Apr; 298(2):211-23. PubMed ID: 10764592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites.
    Anderson JD; Widom J
    J Mol Biol; 2000 Mar; 296(4):979-87. PubMed ID: 10686097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of histone acetylation in the control of gene expression.
    Verdone L; Caserta M; Di Mauro E
    Biochem Cell Biol; 2005 Jun; 83(3):344-53. PubMed ID: 15959560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation.
    Polach KJ; Widom J
    J Mol Biol; 1995 Nov; 254(2):130-49. PubMed ID: 7490738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific contributions of histone tails and their acetylation to the mechanical stability of nucleosomes.
    Brower-Toland B; Wacker DA; Fulbright RM; Lis JT; Kraus WL; Wang MD
    J Mol Biol; 2005 Feb; 346(1):135-46. PubMed ID: 15663933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone acetylation and chromatin remodeling.
    Gregory PD; Wagner K; Hörz W
    Exp Cell Res; 2001 May; 265(2):195-202. PubMed ID: 11302684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal tail domains of core histones in nucleosome block the access of anticancer drugs, mithramycin and daunomycin, to the nucleosomal DNA.
    Mir MA; Das S; Dasgupta D
    Biophys Chem; 2004 Apr; 109(1):121-35. PubMed ID: 15059665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair.
    Bird AW; Yu DY; Pray-Grant MG; Qiu Q; Harmon KE; Megee PC; Grant PA; Smith MM; Christman MF
    Nature; 2002 Sep; 419(6905):411-5. PubMed ID: 12353039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA sequence-dependent contributions of core histone tails to nucleosome stability: differential effects of acetylation and proteolytic tail removal.
    Widlund HR; Vitolo JM; Thiriet C; Hayes JJ
    Biochemistry; 2000 Apr; 39(13):3835-41. PubMed ID: 10736184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleosome dynamics. III. Histone tail-dependent fluctuation of nucleosomes between open and closed DNA conformations. Implications for chromatin dynamics and the linking number paradox. A relaxation study of mononucleosomes on DNA minicircles.
    De Lucia F; Alilat M; Sivolob A; Prunell A
    J Mol Biol; 1999 Jan; 285(3):1101-19. PubMed ID: 9918719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites.
    Anderson JD; Widom J
    Mol Cell Biol; 2001 Jun; 21(11):3830-9. PubMed ID: 11340174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosome dynamics. VI. Histone tail regulation of tetrasome chiral transition. A relaxation study of tetrasomes on DNA minicircles.
    Sivolob A; De Lucia F; Alilat M; Prunell A
    J Mol Biol; 2000 Jan; 295(1):55-69. PubMed ID: 10623508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large scale preparation of nucleosomes containing site-specifically chemically modified histones lacking the core histone tail domains.
    Yang Z; Hayes JJ
    Methods; 2004 May; 33(1):25-32. PubMed ID: 15039084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-specific recognition of DNA in the nucleosome by pyrrole-imidazole polyamides.
    Gottesfeld JM; Melander C; Suto RK; Raviol H; Luger K; Dervan PB
    J Mol Biol; 2001 Jun; 309(3):615-29. PubMed ID: 11397084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of an ING1 growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex.
    Nourani A; Doyon Y; Utley RT; Allard S; Lane WS; Côté J
    Mol Cell Biol; 2001 Nov; 21(22):7629-40. PubMed ID: 11604499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine residues involved in strong histone--DNA interactions to fold DNA into the nucleosome core particle.
    Zama M
    Nucleic Acids Symp Ser; 1991; (25):33-4. PubMed ID: 1842084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae.
    Meijsing SH; Ehrenhofer-Murray AE
    Genes Dev; 2001 Dec; 15(23):3169-82. PubMed ID: 11731480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linker DNA and H1-dependent reorganization of histone-DNA interactions within the nucleosome.
    Lee KM; Hayes JJ
    Biochemistry; 1998 Jun; 37(24):8622-8. PubMed ID: 9628723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 'one-pot' assay for the accessibility of DNA in a nucleosome core particle.
    Wu C; Travers A
    Nucleic Acids Res; 2004 Aug; 32(15):e122. PubMed ID: 15329384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.