BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 11287010)

  • 1. NaCl-activated nucleoside diphosphate kinase from extremely halophilic archaeon, Halobacterium salinarum, maintains native conformation without salt.
    Ishibashi M; Tokunaga H; Hiratsuka K; Yonezawa Y; Tsurumaru H; Arakawa T; Tokunaga M
    FEBS Lett; 2001 Mar; 493(2-3):134-8. PubMed ID: 11287010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning, Expression, Characterization and Immobilization of a Recombinant Carboxylesterase from the Halophilic Archaeon,
    Ortega-de la Rosa ND; Romero-Borbón E; Rodríguez JA; Camacho-Ruiz A; Córdova J
    Biomolecules; 2024 Apr; 14(5):. PubMed ID: 38785941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular dichroism and fluorescence spectroscopy of cysteinyl-tRNA synthetase from Halobacterium salinarum ssp. NRC-1 demonstrates that group I cations are particularly effective in providing structure and stability to this halophilic protein.
    Reed CJ; Bushnell S; Evilia C
    PLoS One; 2014; 9(3):e89452. PubMed ID: 24594651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse micelles in organic solvents: a medium for the biotechnological use of extreme halophilic enzymes at low salt concentration.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    Archaea; 2002 Sep; 1(2):105-11. PubMed ID: 15803648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and mutational analysis of a plant mitochondrial nucleoside diphosphate kinase. Identification of residues involved in serine phosphorylation and oligomerization.
    Johansson M; Mackenzie-Hose A; Andersson I; Knorpp C
    Plant Physiol; 2004 Oct; 136(2):3034-42. PubMed ID: 15466238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Niche adaptation by expansion and reprogramming of general transcription factors.
    Turkarslan S; Reiss DJ; Gibbins G; Su WL; Pan M; Bare JC; Plaisier CL; Baliga NS
    Mol Syst Biol; 2011 Nov; 7():554. PubMed ID: 22108796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CbiZ, an amidohydrolase enzyme required for salvaging the coenzyme B12 precursor cobinamide in archaea.
    Woodson JD; Escalante-Semerena JC
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3591-6. PubMed ID: 14990804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of squalene in the organization of monolayers derived from lipid extracts of Halobacterium salinarum.
    Gilmore SF; Yao AI; Tietel Z; Kind T; Facciotti MT; Parikh AN
    Langmuir; 2013 Jun; 29(25):7922-30. PubMed ID: 23713788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal RNAs overlapping coding sequences can drive the production of alternative proteins in archaea.
    Ten-Caten F; Vêncio RZN; Lorenzetti APR; Zaramela LS; Santana AC; Koide T
    RNA Biol; 2018; 15(8):1119-1132. PubMed ID: 30175688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleoside Diphosphate Kinase from Psychrophilic Pseudoalteromonas sp. AS-131 Isolated from Antarctic Ocean.
    Yonezawa Y; Nagayama A; Tokunaga H; Ishibashi M; Arai S; Kuroki R; Watanabe K; Arakawa T; Tokunaga M
    Protein J; 2015 Aug; 34(4):275-83. PubMed ID: 26242868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divalent metal ion-induced folding mechanism of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1.
    Tannous E; Kanaya S
    PLoS One; 2014; 9(9):e109016. PubMed ID: 25268753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid fibril formation in vitro from halophilic metal binding protein: its high solubility and reversibility minimized formation of amorphous protein aggregations.
    Tokunaga Y; Matsumoto M; Tokunaga M; Arakawa T; Sugimoto Y
    Protein Sci; 2013 Nov; 22(11):1582-91. PubMed ID: 24038709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual role of divalent metal ions in catalysis and folding of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1.
    Tannous E; Yokoyama K; You DJ; Koga Y; Kanaya S
    FEBS Open Bio; 2012; 2():345-52. PubMed ID: 23772368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase of salt dependence of halophilic nucleoside diphosphate kinase caused by a single amino acid substitution.
    Ishibashi M; Hayashi T; Yoshida C; Tokunaga M
    Extremophiles; 2013 Jul; 17(4):585-91. PubMed ID: 23609188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function and biotechnology of extremophilic enzymes in low water activity.
    Karan R; Capes MD; Dassarma S
    Aquat Biosyst; 2012 Feb; 8(1):4. PubMed ID: 22480329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct characteristics of single starch-binding domain SBD1 derived from tandem domains SBD1-SBD2 of halophilic Kocuria varians alpha-amylase.
    Yamaguchi R; Arakawa T; Tokunaga H; Ishibashi M; Tokunaga M
    Protein J; 2012 Mar; 31(3):250-8. PubMed ID: 22388479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural mechanism for dimeric to tetrameric oligomer conversion in Halomonas sp. nucleoside diphosphate kinase.
    Arai S; Yonezawa Y; Okazaki N; Matsumoto F; Tamada T; Tokunaga H; Ishibashi M; Blaber M; Tokunaga M; Kuroki R
    Protein Sci; 2012 Apr; 21(4):498-510. PubMed ID: 22275000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of halophilic enzymes: two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases.
    Tokunaga H; Arakawa T; Tokunaga M
    Protein Sci; 2008 Sep; 17(9):1603-10. PubMed ID: 18573868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of halophilic nucleoside diphosphate kinase by a non-ionic osmolyte, trimethylamine N-oxide.
    Ishibashi M; Sakashita K; Tokunaga H; Arakawa T; Tokunaga M
    J Protein Chem; 2003 May; 22(4):345-51. PubMed ID: 13678298
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.