These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11287219)

  • 1. Fructose triggers DNA modification and damage in an Escherichia coli plasmid.
    Levi B; Werman MJ
    J Nutr Biochem; 2001 Apr; 12(4):235-241. PubMed ID: 11287219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fructose and related phosphate derivatives impose DNA damage and apoptosis in L5178Y mouse lymphoma cells.
    Levi B; Werman MJ
    J Nutr Biochem; 2003 Jan; 14(1):49-60. PubMed ID: 12559477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gamma III-crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions.
    Yan H; Willis AC; Harding JJ
    Biochem J; 2003 Sep; 374(Pt 3):677-85. PubMed ID: 12803541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of fructose and fructose-3-phosphate in maturing rat lenses.
    Lal S; Szwergold BS; Taylor AH; Randall WC; Kappler F; Brown TR
    Invest Ophthalmol Vis Sci; 1995 Apr; 36(5):969-73. PubMed ID: 7706047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of DNA by glucose 6-phosphate induces DNA rearrangements in an Escherichia coli plasmid.
    Bucala R; Model P; Russel M; Cerami A
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8439-42. PubMed ID: 3866232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification.
    Schalkwijk CG; Stehouwer CD; van Hinsbergh VW
    Diabetes Metab Res Rev; 2004; 20(5):369-82. PubMed ID: 15343583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA damage by the glycation products of glyceraldehyde 3-phosphate and lysine.
    Mullokandov EA; Franklin WA; Brownlee M
    Diabetologia; 1994 Feb; 37(2):145-9. PubMed ID: 7512934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression.
    Bucala R; Model P; Cerami A
    Proc Natl Acad Sci U S A; 1984 Jan; 81(1):105-9. PubMed ID: 6582469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of gamma delta transposition in response to elevated glucose-6-phosphate levels.
    Lee AT; Cerami A
    Mutat Res; 1991 Jul; 249(1):125-33. PubMed ID: 1648661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo reactions of nucleic acids with reducing sugars.
    Lee AT; Cerami A
    Mutat Res; 1990 May; 238(3):185-91. PubMed ID: 2111459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect of glycation on catalytic activity of alanine aminotransferase.
    Beránek M; Drsata J; Palicka V
    Mol Cell Biochem; 2001 Feb; 218(1-2):35-9. PubMed ID: 11330835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation of reactive intermediate(s) of glucose 6-phosphate and lysine capable of rapidly reacting with DNA.
    Lee AT; Cerami A
    Mutat Res; 1987 Aug; 179(2):151-8. PubMed ID: 3112565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced glycation of rat liver histone octamers: an in vitro study.
    Gugliucci A
    Biochem Biophys Res Commun; 1994 Aug; 203(1):588-93. PubMed ID: 8074708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry.
    Frolov A; Hoffmann P; Hoffmann R
    J Mass Spectrom; 2006 Nov; 41(11):1459-69. PubMed ID: 17063450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated glucose 6-phosphate levels are associated with plasmid mutations in vivo.
    Lee AT; Cerami A
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8311-4. PubMed ID: 2825185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of heart work and insulin on the incorporation of [14C]glucose into hexose phosphates, uridine diphosphate glucose and glycogen in the normal and insulin-deficient perfused rat heart under working and non-working conditions.
    Das I; Chain ER
    Biochem J; 1976 Mar; 154(3):765-72. PubMed ID: 133675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N(2)-(1-Carboxyethyl)deoxyguanosine, a nonenzymatic glycation adduct of DNA, induces single-strand breaks and increases mutation frequencies.
    Pischetsrieder M; Seidel W; Münch G; Schinzel R
    Biochem Biophys Res Commun; 1999 Oct; 264(2):544-9. PubMed ID: 10529399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of the capacity of phosphorylated fructose to scavenge the hydroxyl radical.
    Spasojević I; Mojović M; Blagojević D; Spasić SD; Jones DR; Nikolić-Kokić A; Spasić MB
    Carbohydr Res; 2009 Jan; 344(1):80-4. PubMed ID: 18947823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycation, Glycolysis, and Neurodegenerative Diseases: Is There Any Connection?
    Muronetz VI; Melnikova AK; Seferbekova ZN; Barinova KV; Schmalhausen EV
    Biochemistry (Mosc); 2017 Aug; 82(8):874-886. PubMed ID: 28941455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.