BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11288308)

  • 1. Mercury mass balances: a case study of two North Dakota power plants.
    Laudal DL; Pavlish JH; Graves J; Stockdill D
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1798-804. PubMed ID: 11288308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes.
    Chou CP; Chiu CH; Chang TC; Hsi HC
    J Air Waste Manag Assoc; 2021 May; 71(5):553-563. PubMed ID: 33284737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of mercury in the combustion products from coal-fired power plants in Guizhou, southwest China.
    Liu S; Chen J; Cao Y; Yang H; Chen C; Jia W
    J Air Waste Manag Assoc; 2019 Feb; 69(2):234-245. PubMed ID: 30396327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fate and behavior of mercury in coal-fired power plants.
    Meij R; Vredenbregt LH; te Winkel H
    J Air Waste Manag Assoc; 2002 Aug; 52(8):912-7. PubMed ID: 12184689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury removals by existing pollutants control devices of four coal-fired power plants in China.
    Wang J; Wang W; Xu W; Wang X; Zhao S
    J Environ Sci (China); 2011; 23(11):1839-44. PubMed ID: 22432308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
    Zhao S; Duan Y; Chen L; Li Y; Yao T; Liu S; Liu M; Lu J
    Environ Pollut; 2017 Oct; 229():863-870. PubMed ID: 28779897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.
    Tian H; Wang Y; Cheng K; Qu Y; Hao J; Xue Z; Chai F
    J Air Waste Manag Assoc; 2012 May; 62(5):576-86. PubMed ID: 22696807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.
    Goodarzi F
    J Environ Monit; 2004 Oct; 6(10):792-8. PubMed ID: 15480492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion.
    Otero-Rey JR; López-Vilariño JM; Moreda-Piñeiro J; Alonso-Rodríguez E; Muniategui-Lorenzo S; López-Mahía P; Prada-Rodríguez D
    Environ Sci Technol; 2003 Nov; 37(22):5262-7. PubMed ID: 14655716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method to assess mercury emissions: a study of three coal-fired electric-generating power station configurations.
    Boylan HM; Cain RD; Kingston HM
    J Air Waste Manag Assoc; 2003 Nov; 53(11):1318-25. PubMed ID: 14649751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals.
    Hsi HC; Lee HH; Hwang JF; Chen W
    J Air Waste Manag Assoc; 2010 May; 60(5):514-22. PubMed ID: 20480850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.
    Chen B; Liu G; Sun R
    Arch Environ Contam Toxicol; 2016 May; 70(4):724-33. PubMed ID: 26883032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active methods of mercury removal from flue gases.
    Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.
    Wu C; Cao Y; Dong Z; Cheng C; Li H; Pan W
    J Environ Sci (China); 2010; 22(2):277-82. PubMed ID: 20397418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of particle emissions and their atmospheric dilution during co-combustion of coal and wood pellets in a large combined heat and power plant.
    Mylläri F; Pirjola L; Lihavainen H; Asmi E; Saukko E; Laurila T; Vakkari V; O'Connor E; Rautiainen J; Häyrinen A; Niemelä V; Maunula J; Hillamo R; Keskinen J; Rönkkö T
    J Air Waste Manag Assoc; 2019 Jan; 69(1):97-108. PubMed ID: 30204539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury emissions from a coal-fired power plant in Japan.
    Yokoyama T; Asakura K; Matsuda H; Ito S; Noda N
    Sci Total Environ; 2000 Oct; 259(1-3):97-103. PubMed ID: 11032139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on removal of mercury from flue gas utilizing existing air pollutant control devices (APCDs).
    Li Y; Yu J; Liu Y; Huang R; Wang Z; Zhao Y
    J Hazard Mater; 2022 Apr; 427():128132. PubMed ID: 35038661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of mercury emissions from a commercial coal-fired power plant: the relationship between stack speciation and near-field plume measurements.
    Landis MS; Ryan JV; ter Schure AF; Laudal D
    Environ Sci Technol; 2014 Nov; 48(22):13540-8. PubMed ID: 25325168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of mercury in flue gas based on an aluminum matrix sorbent.
    Wang J; Xu W; Wang X; Wang W
    ScientificWorldJournal; 2011; 11():2469-79. PubMed ID: 22235178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.