These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 11288829)
61. Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV contour-ring fragments for active electrolocation. Wolf-Homeyer S; Engelmann J; Schneider A Bioinspir Biomim; 2018 Oct; 13(6):066008. PubMed ID: 30226470 [TBL] [Abstract][Full Text] [Related]
62. The "novelty response" in an electric fish: response properties and habituation. Post N; von der Emde G Physiol Behav; 1999 Dec 1-15; 68(1-2):115-28. PubMed ID: 10627070 [TBL] [Abstract][Full Text] [Related]
63. Dim light vision--morphological and functional adaptations of the eye of the mormyrid fish, Gnathonemus petersii. Landsberger M; von der Emde G; Haverkate D; Schuster S; Gentsch J; Ulbricht E; Reichenbach A; Makarov F; Wagner HJ J Physiol Paris; 2008; 102(4-6):291-303. PubMed ID: 18992335 [TBL] [Abstract][Full Text] [Related]
64. Amplitude information-frequency characteristics for multi-frequency excitation of underwater active electrolocation systems. Ren Q; Peng J; Chen H Bioinspir Biomim; 2019 Nov; 15(1):016004. PubMed ID: 31661679 [TBL] [Abstract][Full Text] [Related]
65. Multisensory enhancement of electromotor responses to a single moving object. Pluta SR; Kawasaki M J Exp Biol; 2008 Sep; 211(Pt 18):2919-30. PubMed ID: 18775929 [TBL] [Abstract][Full Text] [Related]
66. The Schnauzenorgan-response of Gnathonemus petersii. Engelmann J; Nöbel S; Röver T; Emde GV Front Zool; 2009 Sep; 6():21. PubMed ID: 19772622 [TBL] [Abstract][Full Text] [Related]
67. On the haptic nature of the active electric sense of fish. Caputi AA; Aguilera PA; Carolina Pereira A; Rodríguez-Cattáneo A Brain Res; 2013 Nov; 1536():27-43. PubMed ID: 23727613 [TBL] [Abstract][Full Text] [Related]
68. The effects of androgens and estrogen on the external morphology and electric organ discharge waveform of Gnathonemus petersii (Mormyridae, Teleostei). Landsman RE; Harding CF; Moller P; Thomas P Horm Behav; 1990 Dec; 24(4):532-53. PubMed ID: 2286367 [TBL] [Abstract][Full Text] [Related]
69. Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish. Heiligenberg W Brain Behav Evol; 1988; 31(1):6-16. PubMed ID: 3334906 [TBL] [Abstract][Full Text] [Related]
70. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals. Baker CA; Ma L; Casareale CR; Carlson BA J Neurosci; 2016 Aug; 36(34):8985-9000. PubMed ID: 27559179 [TBL] [Abstract][Full Text] [Related]
71. Electrosensory systems in the mormyrid fish, Gnathonemus petersii : special emphasis on the fast conducting pathway. Szabo T; Enger PS; Libouban S J Physiol (Paris); 1979; 75(4):409-20. PubMed ID: 512973 [TBL] [Abstract][Full Text] [Related]
72. Spatial resolution of an eye containing a grouped retina: ganglion cell morphology and tectal physiology in the weakly electric fish Gnathonemus petersii. Pusch R; Wagner HJ; von der Emde G; Engelmann J J Comp Neurol; 2013 Dec; 521(17):4075-93. PubMed ID: 23817965 [TBL] [Abstract][Full Text] [Related]
73. Short-range orientation in electric fish: an experimental study of passive electrolocation. Shieh KT; Wilson W; Winslow M; McBride DW; Hopkins CD J Exp Biol; 1996 Nov; 199(Pt 11):2383-93. PubMed ID: 9114503 [TBL] [Abstract][Full Text] [Related]
74. Comparative anatomy of the electrosensory lateral line lobe of mormyrids: the mystery of the missing map in the genus Stomatorhinus (family: Mormyridae). McNamara AM; Denizot JP; Hopkins CD Brain Behav Evol; 2005; 65(3):188-201. PubMed ID: 15703473 [TBL] [Abstract][Full Text] [Related]
75. Shape recognition and classification in electro-sensing. Ammari H; Boulier T; Garnier J; Wang H Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11652-7. PubMed ID: 25071189 [TBL] [Abstract][Full Text] [Related]
76. Electric images of two low resistance objects in weakly electric fish. Rother D; Migliaro A; Canetti R; Gómez L; Caputi A; Budelli R Biosystems; 2003 Sep; 71(1-2):169-77. PubMed ID: 14568217 [TBL] [Abstract][Full Text] [Related]
77. Computational modeling of electric imaging in weakly electric fish: insights for physiology, behavior and evolution. Gómez-Sena L; Pedraja F; Sanguinetti-Scheck JI; Budelli R J Physiol Paris; 2014; 108(2-3):112-28. PubMed ID: 25245199 [TBL] [Abstract][Full Text] [Related]
78. Finding food: senses involved in foraging for insect larvae in the electric fish gnathonemus petersii. Emde G; h J Exp Biol; 1998 Apr; 201 (Pt 7)():969-80. PubMed ID: 9487102 [TBL] [Abstract][Full Text] [Related]
79. Electroreception, electrogenesis and electric signal evolution. Crampton WGR J Fish Biol; 2019 Jul; 95(1):92-134. PubMed ID: 30729523 [TBL] [Abstract][Full Text] [Related]
80. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips. Zakon H; Oestreich J; Tallarovic S; Triefenbach F J Physiol Paris; 2002; 96(5-6):451-8. PubMed ID: 14692493 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]