BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11289588)

  • 21. Descending projections of Forel's field H neurones to the brain stem and the upper cervical spinal cord in the cat.
    Isa T; Sasaki S
    Exp Brain Res; 1992; 88(3):563-79. PubMed ID: 1375165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of spinal cord evoked potential and locomotor function during acute spinal cord compression in cats.
    Iwahara T; Atsuta Y; Watakabe M; Imai M; Harada Y; Takemitsu Y
    Spine (Phila Pa 1976); 1992 Nov; 17(11):1375-80. PubMed ID: 1462214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Projections from the rostral mesencephalic reticular formation to the spinal cord. An HRP and autoradiographical tracing study in the cat.
    Holstege G; Cowie RJ
    Exp Brain Res; 1989; 75(2):265-79. PubMed ID: 2721608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of spinal cord evoked potentials and peripheral nerve evoked potentials by electric stimulation of the spinal cord under acute spinal cord compression in cats.
    Arai M; Goto T; Seichi A; Miura T; Nakamura K
    Spinal Cord; 2000 Jul; 38(7):403-8. PubMed ID: 10962599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The termination of spinomesencephalic fibers in cat. An experimental anatomical study.
    Björkeland M; Boivie J
    Anat Embryol (Berl); 1984; 170(3):265-77. PubMed ID: 6441483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What is the optimal sequence of decompression for multilevel noncontinuous spinal cord compression injuries in rabbits?
    Yang C; Yu B; Ma F; Lu H; Huang J; You Q; Yu B; Qiao J; Feng J
    BMC Neurol; 2017 Feb; 17(1):44. PubMed ID: 28231826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stress analysis of the cervical spinal cord: Impact of the morphology of spinal cord segments on stress.
    Nishida N; Kanchiku T; Imajo Y; Suzuki H; Yoshida Y; Kato Y; Nakashima D; Taguchi T
    J Spinal Cord Med; 2016 May; 39(3):327-34. PubMed ID: 25832134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Delayed neuronal damage related to microglia proliferation after mild spinal cord compression injury.
    Morino T; Ogata T; Horiuchi H; Takeba J; Okumura H; Miyazaki T; Yamamoto H
    Neurosci Res; 2003 Jul; 46(3):309-18. PubMed ID: 12804792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Abnormally large evoked potentials arising from dorsal column fibers in the region of chronically compressed spinal cord.
    Hoshino Y; Kurokawa T; Hongo T; Sasaki S
    Clin Neurophysiol; 1999 Feb; 110(2):305-16. PubMed ID: 10210620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spinal cord compression injury in the mouse: presentation of a model including assessment of motor dysfunction.
    Farooque M
    Acta Neuropathol; 2000 Jul; 100(1):13-22. PubMed ID: 10912915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subcutaneous tri-block copolymer produces recovery from spinal cord injury.
    Borgens RB; Bohnert D; Duerstock B; Spomar D; Lee RC
    J Neurosci Res; 2004 Apr; 76(1):141-54. PubMed ID: 15048938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of core body temperature on changes in spinal somatosensory-evoked potential in acute spinal cord compression injury: an experimental study in the rat.
    Jou IM
    Spine (Phila Pa 1976); 2000 Aug; 25(15):1878-85. PubMed ID: 10908929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Critical roles of decompression in functional recovery of ex vivo spinal cord white matter.
    Ouyang H; Galle B; Li J; Nauman E; Shi R
    J Neurosurg Spine; 2009 Feb; 10(2):161-70. PubMed ID: 19278332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord.
    Nashmi R; Fehlings MG
    Neuroscience; 2001; 104(1):235-51. PubMed ID: 11311546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings.
    Kerkovský M; Bednarík J; Dušek L; Sprláková-Puková A; Urbánek I; Mechl M; Válek V; Kadanka Z
    Spine (Phila Pa 1976); 2012 Jan; 37(1):48-56. PubMed ID: 21228747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sustained spinal cord compression: part II: effect of methylprednisolone on regional blood flow and recovery of somatosensory evoked potentials.
    Carlson GD; Gorden CD; Nakazawa S; Wada E; Smith JS; LaManna JC
    J Bone Joint Surg Am; 2003 Jan; 85(1):95-101. PubMed ID: 12533578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Descending pathways eliciting forelimb stepping in the lateral funiculus: experimental studies with stimulation and lesion of the cervical cord in decerebrate cats.
    Yamaguchi T
    Brain Res; 1986 Jul; 379(1):125-36. PubMed ID: 3742207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exacerbation of spinal cord injury due to static compression occurring early after onset.
    Swartz KR; Scheff NN; Roberts KN; Fee DB
    J Neurosurg Spine; 2009 Nov; 11(5):570-4. PubMed ID: 19929360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis.
    Li XF; Dai LY
    Spine (Phila Pa 1976); 2009 May; 34(11):1140-7. PubMed ID: 19444060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early functional outcomes and histological analysis after spinal cord compression injury in rats.
    Lonjon N; Kouyoumdjian P; Prieto M; Bauchet L; Haton H; Gaviria M; Privat A; Perrin FE
    J Neurosurg Spine; 2010 Jan; 12(1):106-13. PubMed ID: 20043773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.