BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 11289623)

  • 1. Comparative study of three different membranes for guided bone regeneration of rat cranial defects.
    Dupoirieux L; Pourquier D; Picot MC; Neves M
    Int J Oral Maxillofac Surg; 2001 Feb; 30(1):58-62. PubMed ID: 11289623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of pentosan polysulphate on bone healing of rat cranial defects.
    Dupoirieux L; Pourquier D; Picot MC; Neves M
    J Craniomaxillofac Surg; 1999 Oct; 27(5):314-20. PubMed ID: 10717835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guided bone regeneration in calvarial bone defects using polytetrafluoroethylene membranes.
    Bosch C; Melsen B; Vargervik K
    Cleft Palate Craniofac J; 1995 Jul; 32(4):311-7. PubMed ID: 7548104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A preliminary report on the effect of dimeric rhGDF-5 and its monomeric form rhGDF-5C465A on bone healing of rat cranial defects.
    Dupoirieux L; Pohl J; Hanke M; Pourquier D
    J Craniomaxillofac Surg; 2009 Jan; 37(1):30-5. PubMed ID: 18948011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone and suture regeneration in calvarial defects by e-PTFE-membranes and demineralized bone matrix and the impact on calvarial growth: an experimental study in the rat.
    Mardas N; Kostopoulos L; Karring T
    J Craniofac Surg; 2002 May; 13(3):453-62; discussion 462-4. PubMed ID: 12040218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the long-term results of rat cranial bone repair using a particular xenograft.
    Develioglu H; Saraydin S; Kartal U; Taner L
    J Oral Implantol; 2010; 36(3):167-73. PubMed ID: 20553170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of pericranium and eggshell as space fillers used in combination with guided bone regeneration: an experimental study.
    Dupoirieux L; Neves M; Pourquier D
    J Oral Maxillofac Surg; 2000 Jan; 58(1):40-6; discussion 47-8. PubMed ID: 10632164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of a biphasic ceramic on calvarial bone regeneration in rats.
    Develioğlu H; Koptagel E; Gedik R; Dupoirieux L
    J Oral Implantol; 2005; 31(6):309-12. PubMed ID: 16447905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A histomorphometric evaluation of factors influencing the healing of bony defects surrounding implants.
    Pretorius JA; Melsen B; Nel JC; Germishuys PJ
    Int J Oral Maxillofac Implants; 2005; 20(3):387-98. PubMed ID: 15973950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of high-density versus semipermeable PTFE membranes in an elderly experimental model.
    Marouf HA; El-Guindi HM
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2000 Feb; 89(2):164-70. PubMed ID: 10673651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guided bone regeneration using resorbable and non-resorbable membranes: a histological study in dogs.
    Al Salamah L; Babay N; Anil S; Al Rasheed A; Bukhary M
    Odontostomatol Trop; 2012 Jun; 35(138):43-50. PubMed ID: 22988790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of resorbable and nonresorbable guided bone regeneration materials: a preliminary study.
    McGinnis M; Larsen P; Miloro M; Beck FM
    Int J Oral Maxillofac Implants; 1998; 13(1):30-5. PubMed ID: 9509777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Healing of critical-size cranial defects in guinea pigs using a bovine bone-derived resorbable membrane.
    Taga ML; Granjeiro JM; Cestari TM; Taga R
    Int J Oral Maxillofac Implants; 2008; 23(3):427-36. PubMed ID: 18700364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material.
    Kruse A; Jung RE; Nicholls F; Zwahlen RA; Hämmerle CH; Weber FE
    Clin Oral Implants Res; 2011 May; 22(5):506-11. PubMed ID: 21121956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guided tissue regeneration around dental implants in immediate extraction sockets: comparison of resorbable and nonresorbable membranes.
    Mao C; Sato J; Matsuura M; Seto K
    Chin Med Sci J; 1997 Sep; 12(3):170-4. PubMed ID: 11360628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of bioabsorbable and non-resorbable barrier membranes on bone augmentation in rabbit calvaria.
    Ito K; Nanba K; Murai S
    J Periodontol; 1998 Nov; 69(11):1229-37. PubMed ID: 9848532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs.
    Lemperle SM; Calhoun CJ; Curran RW; Holmes RE
    Plast Reconstr Surg; 1998 Mar; 101(3):660-72. PubMed ID: 9500382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone repair of experimentally induced through-and-through defects by Gore-Tex, Guidor, and Vicryl in ferrets: a pilot study.
    Baek SH; Kim S
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2001 Jun; 91(6):710-4. PubMed ID: 11402287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of two bioabsorbable barrier membranes on bone regeneration of standardized defects in calvarial bone: a comparative histomorphometric study in pigs.
    Bornstein MM; Heynen G; Bosshardt DD; Buser D
    J Periodontol; 2009 Aug; 80(8):1289-99. PubMed ID: 19656029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes.
    van Leeuwen AC; Huddleston Slater JJ; Gielkens PF; de Jong JR; Grijpma DW; Bos RR
    Acta Biomater; 2012 Apr; 8(4):1422-9. PubMed ID: 22186161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.