BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11289793)

  • 41. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum.
    Becker J; Klopprogge C; Wittmann C
    Microb Cell Fact; 2008 Mar; 7():8. PubMed ID: 18339202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exchange reactions catalyzed by group-transferring enzymes oppose the quantitation and the unravelling of the identify of the pentose pathway.
    Flanigan I; Collins JG; Arora KK; MacLeod JK; Williams JF
    Eur J Biochem; 1993 Apr; 213(1):477-85. PubMed ID: 8477719
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic flux redistribution in Corynebacterium glutamicum in response to osmotic stress.
    Varela C; Agosin E; Baez M; Klapa M; Stephanopoulos G
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):547-55. PubMed ID: 12536254
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of transketolase modifications on carbon flow to the purine-nucleotide pathway in Corynebacterium ammoniagenes.
    Kamada N; Yasuhara A; Takano Y; Nakano T; Ikeda M
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):710-7. PubMed ID: 11601619
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Carbon flux analysis in a pantothenate overproducing Corynebacterium glutamicum strain.
    Chassagnole C; Létisse F; Diano A; Lindley ND
    Mol Biol Rep; 2002; 29(1-2):129-34. PubMed ID: 12241042
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.
    Wang C; Zhou Z; Cai H; Chen Z; Xu H
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [5-3H]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway.
    Goodwin GW; Cohen DM; Taegtmeyer H
    Am J Physiol Endocrinol Metab; 2001 Mar; 280(3):E502-8. PubMed ID: 11171606
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comprehensive metabolic modeling of multiple 13C-isotopomer data sets to study metabolism in perfused working hearts.
    Crown SB; Kelleher JK; Rouf R; Muoio DM; Antoniewicz MR
    Am J Physiol Heart Circ Physiol; 2016 Oct; 311(4):H881-H891. PubMed ID: 27496880
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rational design of ¹³C-labeling experiments for metabolic flux analysis in mammalian cells.
    Crown SB; Ahn WS; Antoniewicz MR
    BMC Syst Biol; 2012 May; 6():43. PubMed ID: 22591686
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Updates to a
    Jekabsons MB; Gebril HM; Wang YH; Avula B; Khan IA
    Neurochem Int; 2017 Oct; 109():54-67. PubMed ID: 28412312
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 13C NMR based profiling unveils different α-ketoglutarate pools involved into glutamate and lysine synthesis in the milk yeast Kluyveromyces lactis.
    Gorietti D; Zanni E; Palleschi C; Delfini M; Uccelletti D; Saliola M; Puccetti C; Sobolev AP; Mannina L; Miccheli A
    Biochim Biophys Acta; 2015 Nov; 1850(11):2222-7. PubMed ID: 26232531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase.
    Becker J; Klopprogge C; Herold A; Zelder O; Bolten CJ; Wittmann C
    J Biotechnol; 2007 Oct; 132(2):99-109. PubMed ID: 17624457
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells.
    Miccheli A; Tomassini A; Puccetti C; Valerio M; Peluso G; Tuccillo F; Calvani M; Manetti C; Conti F
    Biochimie; 2006 May; 88(5):437-48. PubMed ID: 16359766
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Entner-Doudoroff and Nonoxidative Pentose Phosphate Pathways Bypass Glycolysis and the Oxidative Pentose Phosphate Pathway in Ralstonia solanacearum.
    Jyoti P; Shree M; Joshi C; Prakash T; Ray SK; Satapathy SS; Masakapalli SK
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32156794
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering.
    Neuner A; Heinzle E
    Biotechnol J; 2011 Mar; 6(3):318-29. PubMed ID: 21370474
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.
    Nargund S; Qiu J; Goudar CT
    Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis.
    Shirai T; Fujimura K; Furusawa C; Nagahisa K; Shioya S; Shimizu H
    Microb Cell Fact; 2007 Jun; 6():19. PubMed ID: 17587457
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic fate of glucose in rats with traumatic brain injury and pyruvate or glucose treatments: A NMR spectroscopy study.
    Shijo K; Sutton RL; Ghavim SS; Harris NG; Bartnik-Olson BL
    Neurochem Int; 2017 Jan; 102():66-78. PubMed ID: 27919624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.