These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 11289934)

  • 1. Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs.
    Walther T; Cullis AG; Norris DJ; Hopkinson M
    Phys Rev Lett; 2001 Mar; 86(11):2381-4. PubMed ID: 11289934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Interdiffusion and Segregation during the Life of Indium Gallium Arsenide Quantum Dots, from Cradle to Grave.
    Walther T
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface diffusion and islanding in semiconductor heterostructures.
    Gossmann HJ; Fisanick GJ
    Scanning Microsc; 1990 Sep; 4(3):543-51; discussion 551-3. PubMed ID: 2080423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of three-dimensional islands in subcritical layer deposition in Stranski-Krastanow growth.
    Shchukin V; Ledentsov N; Rouvimov S
    Phys Rev Lett; 2013 Apr; 110(17):176101. PubMed ID: 23679747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape control of InGaAs nanostructures on nominal GaAs(001): dashes and dots.
    Kim DJ; Yang H
    Nanotechnology; 2008 Nov; 19(47):475601. PubMed ID: 21836276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of growth and annealing temperatures on the structural and the optical properties of In0.6Al0.4As/Al0.4Ga0.6As quantum dots.
    Kim SY; Song JD; Han IK; Kim TW
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5881-4. PubMed ID: 25936020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of Ge nanoripples on vicinal Si (1110): from Stranski-Krastanow seeds to a perfectly faceted wetting layer.
    Chen G; Sanduijav B; Matei D; Springholz G; Scopece D; Beck MJ; Montalenti F; Miglio L
    Phys Rev Lett; 2012 Feb; 108(5):055503. PubMed ID: 22400940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems.
    Shen J; Song Y; Lee ML; Cha JJ
    Nanotechnology; 2014 Nov; 25(46):465702. PubMed ID: 25354930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. InAs/GaAs nanostructures grown on patterned Si(001) by molecular beam epitaxy.
    He J; Yadavalli K; Zhao Z; Li N; Hao Z; Wang KL; Jacob AP
    Nanotechnology; 2008 Nov; 19(45):455607. PubMed ID: 21832784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman and AFM studies of swift heavy ion irradiated InGaAs/GaAs heterostructures.
    Dhamodaran S; Sathish N; Pathak AP; Khan SA; Avasthi DK; Srinivasan T; Muralidharan R; Kesavamoorthy R; Emfietzoglou D
    J Phys Condens Matter; 2006 May; 18(17):4135-42. PubMed ID: 21690769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taper PbZr(0.2)Ti(0.8)O3 nanowire arrays: from controlled growth by pulsed laser deposition to piezopotential measurements.
    Chen YZ; Liu TH; Chen CY; Liu CH; Chen SY; Wu WW; Wang ZL; He JH; Chu YH; Chueh YL
    ACS Nano; 2012 Mar; 6(3):2826-32. PubMed ID: 22375956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition homogeneity in InGaAs/GaAs core-shell nanopillars monolithically grown on silicon.
    Ng KW; Ko WS; Chen R; Lu F; Tran TT; Li K; Chang-Hasnain CJ
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16706-11. PubMed ID: 25221844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of electron irradiation on the electronic transport mechanisms during the conductive AFM imaging of InAs/GaAs quantum dots capped with a thin GaAs layer.
    Troyon M; Smaali K
    Nanotechnology; 2008 Jun; 19(25):255709. PubMed ID: 21828669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of Ge-Sn nanodots on Si(100) surfaces by molecular beam epitaxy.
    Mashanov V; Ulyanov V; Timofeev V; Nikiforov A; Pchelyakov O; Yu IS; Cheng H
    Nanoscale Res Lett; 2011 Jan; 6(1):85. PubMed ID: 21711584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thickness-dependent elastic strain in Stranski-Krastanow growth.
    Dirko VV; Lozovoy KA; Kokhanenko AP; Voitsekhovskii AV
    Phys Chem Chem Phys; 2020 Sep; 22(34):19318-19325. PubMed ID: 32820766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission electron microscopy characterization of Au/Pt/Ti/Pt/GaAs ohmic contacts for high power GaAs/InGaAs semiconductor lasers.
    Łaszcz A; Czerwinski A; Ratajczak J; Szerling A; Phillipp F; Van Aken PA; Katcki J
    J Microsc; 2010 Mar; 237(3):347-51. PubMed ID: 20500394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and composition profile of InAs/GaAs quantum dots capped by an InGaAs and InAlAs combination layer.
    He J; Wu Y; Wang KL
    Nanotechnology; 2010 Jun; 21(25):255705. PubMed ID: 20516585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensile-strained nanoscale Ge/In0.16Ga0.84As heterostructure for tunnel field-effect transistor.
    Zhu Y; Maurya D; Priya S; Hudait MK
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4947-53. PubMed ID: 24635912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique design approach to realize an O-band laser monolithically integrated on 300 mm Si substrate by nano-ridge engineering.
    Colucci D; Baryshnikova M; Shi Y; Mols Y; Muneeb M; Koninck Y; Yudistira D; Pantouvaki M; Campenhout JV; Langer R; Thourhout DV; Kunert B
    Opt Express; 2022 Apr; 30(8):13510-13521. PubMed ID: 35472961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrugated surfaces formed on GaAs(331)A substrates: the template for laterally ordered InGaAs nanowires.
    Gong Z; Niu Z; Fang Z
    Nanotechnology; 2006 Feb; 17(4):1140-5. PubMed ID: 21727394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.