These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A coefficient average approximation towards Gutzwiller wavefunction formalism. Liu J; Yao Y; Wang CZ; Ho KM J Phys Condens Matter; 2015 Jun; 27(24):245604. PubMed ID: 26037145 [TBL] [Abstract][Full Text] [Related]
5. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations. Ren X; Tkatchenko A; Rinke P; Scheffler M Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551 [TBL] [Abstract][Full Text] [Related]
6. Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism. Beuerle M; Graf D; Schurkus HF; Ochsenfeld C J Chem Phys; 2018 May; 148(20):204104. PubMed ID: 29865814 [TBL] [Abstract][Full Text] [Related]
7. Calculation of K-edge circular dichroism of amino acids: comparison of random phase approximation with other methods. Kimberg V; Kosugi N J Chem Phys; 2007 Jun; 126(24):245101. PubMed ID: 17614589 [TBL] [Abstract][Full Text] [Related]
8. Order and excitation in partially Gutzwiller projected t-t'-t"-J-U models. Voo KK J Phys Condens Matter; 2011 Dec; 23(49):495602. PubMed ID: 22101308 [TBL] [Abstract][Full Text] [Related]
9. Antiferromagnetic order in multiband Hubbard models for iron pnictides. Schickling T; Gebhard F; Bünemann J Phys Rev Lett; 2011 Apr; 106(14):146402. PubMed ID: 21561206 [TBL] [Abstract][Full Text] [Related]
11. On the importance of excited state dynamic response electron correlation in polarizable embedding methods. Eriksen JJ; Sauer SP; Mikkelsen KV; Jensen HJ; Kongsted J J Comput Chem; 2012 Sep; 33(25):2012-22. PubMed ID: 22685085 [TBL] [Abstract][Full Text] [Related]
12. Real versus artifactual symmetry-breaking effects in Hartree-Fock, density-functional, and coupled-cluster methods. Russ NJ; Crawford TD; Tschumper GS J Chem Phys; 2004 Apr; 120(16):7298-306. PubMed ID: 15267639 [TBL] [Abstract][Full Text] [Related]
13. Hybrid functionals including random phase approximation correlation and second-order screened exchange. Paier J; Janesko BG; Henderson TM; Scuseria GE; Grüneis A; Kresse G J Chem Phys; 2010 Mar; 132(9):094103. PubMed ID: 20210385 [TBL] [Abstract][Full Text] [Related]
14. Electron correlation and fermi surface topology of NaxCoO2. Zhou S; Gao M; Ding H; Lee PA; Wang Z Phys Rev Lett; 2005 May; 94(20):206401. PubMed ID: 16090264 [TBL] [Abstract][Full Text] [Related]
15. Correct description of the bond dissociation limit without breaking spin symmetry by a random-phase-approximation correlation functional. Hesselmann A; Görling A Phys Rev Lett; 2011 Mar; 106(9):093001. PubMed ID: 21405619 [TBL] [Abstract][Full Text] [Related]
17. Corrected density functional theory and the random phase approximation: Improved accuracy at little extra cost. Graf D; Thom AJW J Chem Phys; 2023 Nov; 159(17):. PubMed ID: 37921249 [TBL] [Abstract][Full Text] [Related]
18. Spin- and charge-density waves in the Hartree-Fock ground state of the two-dimensional Hubbard model. Xu J; Chang CC; Walter EJ; Zhang S J Phys Condens Matter; 2011 Dec; 23(50):505601. PubMed ID: 22127010 [TBL] [Abstract][Full Text] [Related]
19. First-order nonadiabatic coupling matrix elements between excited states: a Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels. Li Z; Liu W J Chem Phys; 2014 Jul; 141(1):014110. PubMed ID: 25005280 [TBL] [Abstract][Full Text] [Related]
20. Theory of antibound states in partially filled narrow band systems. Seibold G; Becca F; Lorenzana J Phys Rev Lett; 2008 Jan; 100(1):016405. PubMed ID: 18232796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]