These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11290217)

  • 1. Typical solution time for a vertex-covering algorithm on finite-connectivity random graphs.
    Weigt M; Hartmann AK
    Phys Rev Lett; 2001 Feb; 86(8):1658-61. PubMed ID: 11290217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Number of guards needed by a museum: a phase transition in vertex covering of random graphs.
    Weigt M; Hartmann AK
    Phys Rev Lett; 2000 Jun; 84(26 Pt 1):6118-21. PubMed ID: 10991138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase transition for cutting-plane approach to vertex-cover problem.
    Dewenter T; Hartmann AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041128. PubMed ID: 23214550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimal vertex covers on finite-connectivity random graphs: a hard-sphere lattice-gas picture.
    Weigt M; Hartmann AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056127. PubMed ID: 11414981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability analysis on the finite-temperature replica-symmetric and first-step replica-symmetry-broken cavity solutions of the random vertex cover problem.
    Zhang P; Zeng Y; Zhou H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021122. PubMed ID: 19792092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering analysis of the ground-state structure of the vertex-cover problem.
    Barthel W; Hartmann AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066120. PubMed ID: 15697447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase transitions in the coloring of random graphs.
    Zdeborová L; Krzakała F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031131. PubMed ID: 17930223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting the solution space of vertex cover by mutual determinations and backbones.
    Wei W; Zhang R; Guo B; Zheng Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016112. PubMed ID: 23005496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Balanced K-satisfiability and biased random K-satisfiability on trees.
    Sumedha ; Krishnamurthy S; Sahoo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042130. PubMed ID: 23826613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum vertex cover problems on random hypergraphs: replica symmetric solution and a leaf removal algorithm.
    Takabe S; Hukushima K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062139. PubMed ID: 25019756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cutting-plane algorithms and solution whitening for the vertex-cover problem.
    Claussen G; Hartmann AK
    Phys Rev E; 2022 Sep; 106(3-2):035305. PubMed ID: 36266853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polynomial iterative algorithms for coloring and analyzing random graphs.
    Braunstein A; Mulet R; Pagnani A; Weigt M; Zecchina R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036702. PubMed ID: 14524921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coloring random graphs and maximizing local diversity.
    Bounkong S; van Mourik J; Saad D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):057101. PubMed ID: 17280022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transitions of the typical algorithmic complexity of the random satisfiability problem studied with linear programming.
    Schawe H; Bleim R; Hartmann AK
    PLoS One; 2019; 14(4):e0215309. PubMed ID: 31002678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coloring random graphs.
    Mulet R; Pagnani A; Weigt M; Zecchina R
    Phys Rev Lett; 2002 Dec; 89(26):268701. PubMed ID: 12484862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-glass phase transitions and minimum energy of the random feedback vertex set problem.
    Qin SM; Zeng Y; Zhou HJ
    Phys Rev E; 2016 Aug; 94(2-1):022146. PubMed ID: 27627285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum adiabatic optimization and combinatorial landscapes.
    Smelyanskiy VN; Knysh S; Morris RD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036702. PubMed ID: 15524670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threshold values, stability analysis, and high-q asymptotics for the coloring problem on random graphs.
    Krzakała F; Pagnani A; Weigt M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046705. PubMed ID: 15600563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tapping spin glasses and ferromagnets on random graphs.
    Dean DS; Lefèvre A
    Phys Rev Lett; 2001 Jun; 86(25):5639-42. PubMed ID: 11415322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horizontal visibility graphs: exact results for random time series.
    Luque B; Lacasa L; Ballesteros F; Luque J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046103. PubMed ID: 19905386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.