These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11290257)

  • 1. Geometry-dependent dephasing in small metallic wires.
    Natelson D; Willett RL; West KW; Pfeiffer LN
    Phys Rev Lett; 2001 Feb; 86(9):1821-4. PubMed ID: 11290257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-induced dephasing in one-dimensional metal wires.
    Wei J; Pereverzev S; Gershenson ME
    Phys Rev Lett; 2006 Mar; 96(8):086801. PubMed ID: 16606210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of electron dephasing due to inelastic scattering from defects in weakly disordered AuPd wires.
    Zhong YL; Sergeev A; Chen CD; Lin JJ
    Phys Rev Lett; 2010 May; 104(20):206803. PubMed ID: 20867051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron dephasing and weak localization in Sn doped In(2)O(3) nanowires.
    Chiquito AJ; Lanfredi AJ; Oliveira RF; Pozzi LP; Leite ER
    Nano Lett; 2007 May; 7(5):1439-43. PubMed ID: 17441774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase coherence of conduction electrons below the Kondo temperature.
    Alzoubi GM; Birge NO
    Phys Rev Lett; 2006 Dec; 97(22):226803. PubMed ID: 17155826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dephasing by extremely dilute magnetic impurities revealed by Aharonov-Bohm oscillations.
    Pierre F; Birge NO
    Phys Rev Lett; 2002 Nov; 89(20):206804. PubMed ID: 12443498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exponential sensitivity to dephasing of electrical conduction through a quantum dot.
    Tworzydło J; Tajic A; Schomerus H; Brouwer PW; Beenakker CW
    Phys Rev Lett; 2004 Oct; 93(18):186806. PubMed ID: 15525195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic localization in quantum dots: analytical theory.
    Basko DM; Skvortsov MA; Kravtsov VE
    Phys Rev Lett; 2003 Mar; 90(9):096801. PubMed ID: 12689247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-field measurements of electron decoherence time in metallic nanowires: switching off magnetic impurity spins.
    Mohanty P; Webb RA
    Phys Rev Lett; 2003 Aug; 91(6):066604. PubMed ID: 12935098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Length dependence of electron transport through molecular wires--a first principles perspective.
    Khoo KH; Chen Y; Li S; Quek SY
    Phys Chem Chem Phys; 2015 Jan; 17(1):77-96. PubMed ID: 25407785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance, magnetoresistance, and thermopower of zinc nanowire composites.
    Heremans JP; Thrush CM; Morelli DT; Wu MC
    Phys Rev Lett; 2003 Aug; 91(7):076804. PubMed ID: 12935042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dephasing in disordered metals with superconductive grains.
    Skvortsov MA; Larkin AI; Feigel'man MV
    Phys Rev Lett; 2004 Jun; 92(24):247002. PubMed ID: 15245123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dephasing time in graphene due to interaction with flexural phonons.
    Tikhonov KS; Zhao WL; Finkel'stein AM
    Phys Rev Lett; 2014 Aug; 113(7):076601. PubMed ID: 25170722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron correlation effects on the femtosecond dephasing dynamics of E22 excitons in (6,5) carbon nanotubes.
    Schneck JR; Walsh AG; Green AA; Hersam MC; Ziegler LD; Swan AK
    J Phys Chem A; 2011 Apr; 115(16):3917-23. PubMed ID: 21241060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous temperature dependence of the dephasing time in mesoscopic kondo wires.
    Schopfer F; Bäuerle C; Rabaud W; Saminadayar L
    Phys Rev Lett; 2003 Feb; 90(5):056801. PubMed ID: 12633383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling of the low-temperature dephasing rate in Kondo systems.
    Mallet F; Ericsson J; Mailly D; Unlübayir S; Reuter D; Melnikov A; Wieck AD; Micklitz T; Rosch A; Costi TA; Saminadayar L; Bäuerle C
    Phys Rev Lett; 2006 Dec; 97(22):226804. PubMed ID: 17155827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between the noise-induced persistent current and the dephasing rate.
    Kravtsov VE; Altshuler BL
    Phys Rev Lett; 2000 Apr; 84(15):3394-7. PubMed ID: 11019098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low temperature magnetoresistance measurements on bismuth nanowire arrays.
    Kaiser Ch; Weiss G; Cornelius TW; Toimil-Molares ME; Neumann R
    J Phys Condens Matter; 2009 May; 21(20):205301. PubMed ID: 21825526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum-interference transport through surface layers of indium-doped ZnO nanowires.
    Chiu SP; Lu JG; Lin JJ
    Nanotechnology; 2013 Jun; 24(24):245203. PubMed ID: 23689960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise dephasing in edge states of the integer quantum Hall regime.
    Roulleau P; Portier F; Roche P; Cavanna A; Faini G; Gennser U; Mailly D
    Phys Rev Lett; 2008 Oct; 101(18):186803. PubMed ID: 18999848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.