These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 11290709)

  • 1. A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans.
    Bockmühl DP; Ernst JF
    Genetics; 2001 Apr; 157(4):1523-30. PubMed ID: 11290709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of the Efg1p morphogenetic pathway in Candida albicans by negative autoregulation and PKA-dependent repression of the EFG1 gene.
    Tebarth B; Doedt T; Krishnamurthy S; Weide M; Monterola F; Dominguez A; Ernst JF
    J Mol Biol; 2003 Jun; 329(5):949-62. PubMed ID: 12798685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi.
    Stoldt VR; Sonneborn A; Leuker CE; Ernst JF
    EMBO J; 1997 Apr; 16(8):1982-91. PubMed ID: 9155024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional mapping of the Candida albicans Efg1 regulator.
    Noffz CS; Liedschulte V; Lengeler K; Ernst JF
    Eukaryot Cell; 2008 May; 7(5):881-93. PubMed ID: 18375615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphogenesis-regulated localization of protein kinase A to genomic sites in Candida albicans.
    Schaekel A; Desai PR; Ernst JF
    BMC Genomics; 2013 Dec; 14(1):842. PubMed ID: 24289325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator.
    Sonneborn A; Bockmühl DP; Ernst JF
    Infect Immun; 1999 Oct; 67(10):5514-7. PubMed ID: 10496941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. APSES proteins regulate morphogenesis and metabolism in Candida albicans.
    Doedt T; Krishnamurthy S; Bockmühl DP; Tebarth B; Stempel C; Russell CL; Brown AJ; Ernst JF
    Mol Biol Cell; 2004 Jul; 15(7):3167-80. PubMed ID: 15218092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks.
    Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF
    J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans.
    Sonneborn A; Bockmühl DP; Gerads M; Kurpanek K; Sanglard D; Ernst JF
    Mol Microbiol; 2000 Jan; 35(2):386-96. PubMed ID: 10652099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efg1 directly regulates ACE2 expression to mediate cross talk between the cAMP/PKA and RAM pathways during Candida albicans morphogenesis.
    Saputo S; Kumar A; Krysan DJ
    Eukaryot Cell; 2014 Sep; 13(9):1169-80. PubMed ID: 25001410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes.
    Wang A; Raniga PP; Lane S; Lu Y; Liu H
    Mol Cell Biol; 2009 Aug; 29(16):4406-16. PubMed ID: 19528234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candida albicans Tpk1p and Tpk2p isoforms differentially regulate pseudohyphal development, biofilm structure, cell aggregation and adhesins expression.
    Giacometti R; Kronberg F; Biondi RM; Passeron S
    Yeast; 2011 Apr; 28(4):293-308. PubMed ID: 21456055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ndr/LATS Kinase Cbk1 Regulates a Specific Subset of Ace2 Functions and Suppresses the Hypha-to-Yeast Transition in Candida albicans.
    Wakade RS; Ristow LC; Stamnes MA; Kumar A; Krysan DJ
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target specificity of the Candida albicans Efg1 regulator.
    Lassak T; Schneider E; Bussmann M; Kurtz D; Manak JR; Srikantha T; Soll DR; Ernst JF
    Mol Microbiol; 2011 Nov; 82(3):602-18. PubMed ID: 21923768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1.
    Lane S; Zhou S; Pan T; Dai Q; Liu H
    Mol Cell Biol; 2001 Oct; 21(19):6418-28. PubMed ID: 11533231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the Candida albicans morphogenesis regulator gene CZF1 and its regulation by Efg1p and Czf1p.
    Vinces MD; Haas C; Kumamoto CA
    Eukaryot Cell; 2006 May; 5(5):825-35. PubMed ID: 16682460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia and Temperature Regulated Morphogenesis in Candida albicans.
    Desai PR; van Wijlick L; Kurtz D; Juchimiuk M; Ernst JF
    PLoS Genet; 2015 Aug; 11(8):e1005447. PubMed ID: 26274602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes.
    Ku M; Baek YU; Kwak MK; Kang SO
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):772-788. PubMed ID: 27751952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes.
    Pierce JV; Dignard D; Whiteway M; Kumamoto CA
    Eukaryot Cell; 2013 Jan; 12(1):37-49. PubMed ID: 23125349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signaling through protein kinases and transcriptional regulators in Candida albicans.
    Dhillon NK; Sharma S; Khuller GK
    Crit Rev Microbiol; 2003; 29(3):259-75. PubMed ID: 14582620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.