BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 11291856)

  • 1. Fox (forkhead) genes are involved in the dorso-ventral patterning of the Xenopus mesoderm.
    El-Hodiri H; Bhatia-Dey N; Kenyon K; Ault K; Dirksen M; Jamrich M
    Int J Dev Biol; 2001; 45(1):265-71. PubMed ID: 11291856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain.
    Sullivan SA; Akers L; Moody SA
    Dev Biol; 2001 Apr; 232(2):439-57. PubMed ID: 11401404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes.
    Yoon JK; Moon RT; Wold B
    Dev Biol; 2000 Jun; 222(2):376-91. PubMed ID: 10837126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of fork head genes during early Xenopus and zebrafish development.
    Dirksen ML; Jamrich M
    Dev Genet; 1995; 17(2):107-16. PubMed ID: 7586752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders.
    Whiteley M; Mathers PH; Jamrich M
    Dev Genet; 1997; 20(2):145-51. PubMed ID: 9144925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GATA-1 inhibits the formation of notochord and neural tissue in Xenopus embryo.
    Shibata K; Ishimura A; Maéno M
    Biochem Biophys Res Commun; 1998 Nov; 252(1):241-8. PubMed ID: 9813177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and developmental expression of Xenopus paraxis.
    Tseng HT; Jamrich M
    Int J Dev Biol; 2004 Dec; 48(10):1155-8. PubMed ID: 15602702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of planar and early vertical signaling in patterning the expression of Hoxb-1 in Xenopus.
    Poznanski A; Keller R
    Dev Biol; 1997 Apr; 184(2):351-66. PubMed ID: 9133441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate.
    Wilm B; James RG; Schultheiss TM; Hogan BL
    Dev Biol; 2004 Jul; 271(1):176-89. PubMed ID: 15196959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activin A signaling directly activates Xenopus winged helix factors XFD-4/4', the orthologues to mammalian MFH-1.
    Köster M; Dillinger K; Knöchel W
    Dev Genes Evol; 2000 Jun; 210(6):320-4. PubMed ID: 11180837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of node ablation on the morphogenesis of the body axis and the lateral asymmetry of the mouse embryo during early organogenesis.
    Davidson BP; Kinder SJ; Steiner K; Schoenwolf GC; Tam PP
    Dev Biol; 1999 Jul; 211(1):11-26. PubMed ID: 10373301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development.
    Pohl BS; Knöchel W
    Gene; 2005 Jan; 344():21-32. PubMed ID: 15656969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome localization, sequence analysis, and expression pattern identify FKHL 18 as a novel human forkhead gene.
    Cederberg A; Betz R; Lagercrantz S; Larsson C; Hulander M; Carlsson P; Enerbäck S
    Genomics; 1997 Sep; 44(3):344-6. PubMed ID: 9325056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer element.
    Rojas A; De Val S; Heidt AB; Xu SM; Bristow J; Black BL
    Development; 2005 Aug; 132(15):3405-17. PubMed ID: 15987774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fork head related multigene family is transcribed in Xenopus laevis embryos.
    Lef J; Dege P; Scheucher M; Forsbach-Birk V; Clement JH; Knöchel W
    Int J Dev Biol; 1996 Feb; 40(1):245-53. PubMed ID: 8735935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression pattern of the winged helix factor XFD-11 during Xenopus embryogenesis.
    Köster M; Dillinger K; Knöchel W
    Mech Dev; 1998 Aug; 76(1-2):169-73. PubMed ID: 9767159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of Xlim1 function in the Spemann-Mangold organizer.
    Kodjabachian L; Karavanov AA; Hikasa H; Hukriede NA; Aoki T; Taira M; Dawid IB
    Int J Dev Biol; 2001; 45(1):209-18. PubMed ID: 11291848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CyNodal, the Japanese newt nodal-related gene, is expressed in the left side of the lateral plate mesoderm and diencephalon.
    Ito Y; Oinuma T; Takano K; Komazaki S; Obata S; Asashima M
    Gene Expr Patterns; 2006 Mar; 6(3):294-8. PubMed ID: 16377258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cMeso-1, a novel bHLH transcription factor, is involved in somite formation in chicken embryos.
    Buchberger A; Seidl K; Klein C; Eberhardt H; Arnold HH
    Dev Biol; 1998 Jul; 199(2):201-15. PubMed ID: 9698440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary conservation of mechanisms upstream of asymmetric Nodal expression: reconciling chick and Xenopus.
    Levin M; Mercola M
    Dev Genet; 1998; 23(3):185-93. PubMed ID: 9842713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.