BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11291857)

  • 21. Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning.
    Kumano G; Smith WC
    Dev Dyn; 2002 Dec; 225(4):409-21. PubMed ID: 12454919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Vitro organogenesis using amphibian pluripotent cells.
    Okabayashi K; Asashima M
    Proc Jpn Acad Ser B Phys Biol Sci; 2006 Nov; 82(7):197-207. PubMed ID: 25792783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Frontier research on mesoderm induction in the early amphibian embryos].
    Uchiyama H; Asashima M
    Tanpakushitsu Kakusan Koso; 1992 Jun; 37(8):1369-80. PubMed ID: 1615151
    [No Abstract]   [Full Text] [Related]  

  • 24. Structural and functional evidences for a type 1 TGF-beta sensu stricto receptor in the lophotrochozoan Crassostrea gigas suggest conserved molecular mechanisms controlling mesodermal patterning across bilateria.
    Herpin A; Lelong C; Becker T; Rosa FM; Favrel P; Cunningham C
    Mech Dev; 2005 May; 122(5):695-705. PubMed ID: 15817226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct roles for hindbrain and paraxial mesoderm in the induction and patterning of the inner ear revealed by a study of vitamin-A-deficient quail.
    Kil SH; Streit A; Brown ST; Agrawal N; Collazo A; Zile MH; Groves AK
    Dev Biol; 2005 Sep; 285(1):252-71. PubMed ID: 16039643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning.
    Vize PD; Seufert DW; Carroll TJ; Wallingford JB
    Dev Biol; 1997 Aug; 188(2):189-204. PubMed ID: 9268568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time course of ion channel development in Xenopus muscle induced in vitro by activin.
    Currie DA; Moody WJ
    Dev Biol; 1999 May; 209(1):40-51. PubMed ID: 10208741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioassays for studying the role of the peptide growth factor activin in early amphibian embryogenesis.
    Asashima M; Ariizumi T; Takahashi S; Malacinski GM
    Methods Mol Biol; 2000; 136():15-26. PubMed ID: 10840693
    [No Abstract]   [Full Text] [Related]  

  • 29. Nodal signaling and the zebrafish organizer.
    Schier AF; Talbot WS
    Int J Dev Biol; 2001; 45(1):289-97. PubMed ID: 11291859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of the organizer and the chordate body plan.
    Gerhart J
    Int J Dev Biol; 2001; 45(1):133-53. PubMed ID: 11291842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ventral tail bud mesenchyme is a signaling center for tail paraxial mesoderm induction.
    Liu C; Knezevic V; Mackem S
    Dev Dyn; 2004 Mar; 229(3):600-6. PubMed ID: 14991715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps.
    Drews C; Senkel S; Ryffel GU
    BMC Dev Biol; 2011 Jan; 11():5. PubMed ID: 21281489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction of cardiogenesis by Hensen's node and fibroblast growth factors.
    Lopez-Sanchez C; Climent V; Schoenwolf GC; Alvarez IS; Garcia-Martinez V
    Cell Tissue Res; 2002 Aug; 309(2):237-49. PubMed ID: 12172783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental potential for morphogenesis in vivo and in vitro.
    Kaneko K; Sato K; Michiue T; Okabayashi K; Ohnuma K; Danno H; Asashima M
    J Exp Zool B Mol Dev Evol; 2008 Sep; 310(6):492-503. PubMed ID: 18553388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Head-organizing activities of endodermal tissues in vertebrates.
    Knoetgen H; Teichmann U; Kessel M
    Cell Mol Biol (Noisy-le-grand); 1999 Jul; 45(5):481-92. PubMed ID: 10512181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nodal and Fgf pathways interact through a positive regulatory loop and synergize to maintain mesodermal cell populations.
    Mathieu J; Griffin K; Herbomel P; Dickmeis T; Strähle U; Kimelman D; Rosa FM; Peyriéras N
    Development; 2004 Feb; 131(3):629-41. PubMed ID: 14711879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The FGFR pathway is required for the trunk-inducing functions of Spemann's organizer.
    Mitchell TS; Sheets MD
    Dev Biol; 2001 Sep; 237(2):295-305. PubMed ID: 11543615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A.
    Abe T; Furue M; Kondow A; Matsuzaki K; Asashima M
    Mech Dev; 2005 May; 122(5):671-80. PubMed ID: 15817224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms.
    Pan FC; Chen Y; Bayha E; Pieler T
    Mech Dev; 2007 Aug; 124(7-8):518-31. PubMed ID: 17643968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The avian organizer.
    Boettger T; Knoetgen H; Wittler L; Kessel M
    Int J Dev Biol; 2001; 45(1):281-7. PubMed ID: 11291858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.