BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1840 related articles for article (PubMed ID: 11292253)

  • 1. Thymic T-cell tolerance of neuroendocrine functions: physiology and pathophysiology.
    Geenen V; Kecha O; Brilot F; Hansenne I; Renard C; Martens H
    Cell Mol Biol (Noisy-le-grand); 2001 Feb; 47(1):179-88. PubMed ID: 11292253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thymic transcription of neurohypophysial and insulin-related genes: impact upon T-cell differentiation and self-tolerance.
    Hansenne I
    J Neuroendocrinol; 2005 May; 17(5):321-7. PubMed ID: 15869568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thymus-dependent T cell tolerance of neuroendocrine functions: principles, reflections, and implications for tolerogenic/negative self-vaccination.
    Geenen V
    Ann N Y Acad Sci; 2006 Nov; 1088():284-96. PubMed ID: 17192574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The central role of the thymus in the education of T cells to neuroendocrine principles].
    Geenen V
    Verh K Acad Geneeskd Belg; 1993; 55(1):79-87. PubMed ID: 8480448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the reticulo-epithelial (RE) cell network in the immuno-neuroendocrine regulation of intrathymic lymphopoiesis.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    Anticancer Res; 2000; 20(3A):1871-88. PubMed ID: 10928121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network.
    Bodey B; Bodey B; Kaiser HE
    In Vivo; 1997; 11(4):351-70. PubMed ID: 9292303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thymic repertoire of neuroendocrine-related self antigens: biological role in T-cell selection and pharmacological implications.
    Geenen V; Kecha O; Brilot F; Charlet-Renard C; Martens H
    Neuroimmunomodulation; 1999; 6(1-2):115-25. PubMed ID: 9876242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thymic self-antigens for the design of a negative/tolerogenic self-vaccination against type 1 diabetes.
    Geenen V; Mottet M; Dardenne O; Kermani H; Martens H; Francois JM; Galleni M; Hober D; Rahmouni S; Moutschen M
    Curr Opin Pharmacol; 2010 Aug; 10(4):461-72. PubMed ID: 20434402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thymic microenvironments for T-cell repertoire formation.
    Nitta T; Murata S; Ueno T; Tanaka K; Takahama Y
    Adv Immunol; 2008; 99():59-94. PubMed ID: 19117532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thymocyte antigens do not induce tolerance in the CD4+ T cell compartment.
    Jhaver KG; Chandler P; Simpson E; Mellor AL
    J Immunol; 1999 Nov; 163(9):4851-8. PubMed ID: 10528186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular and molecular aspects of thymic T-cell education in neuroendocrine self principles. Implications for autoimmunity.
    Geenen V; Martens H; Vandersmissen E; Achour I; Kecha O; Franchimont D
    Ann N Y Acad Sci; 1998 May; 840():328-37. PubMed ID: 9629260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promiscuous gene expression in the thymus: the root of central tolerance.
    Magalhães DA; Silveira EL; Junta CM; Sandrin-Garcia P; Fachin AL; Donadi EA; Sakamoto-Hojo ET; Passos GA
    Clin Dev Immunol; 2006; 13(2-4):81-99. PubMed ID: 17162352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the thymus in the integrated evolution of the recombinase-dependent adaptive immune response and the neuroendocrine system.
    Mottet M; Goffinet L; Beckers A; Bodart G; Morrhaye G; Kermani H; Renard C; Martens H; Geenen V
    Neuroimmunomodulation; 2011; 18(5):314-9. PubMed ID: 21952683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thymic repertoire of neuroendocrine self antigens and the central immune tolerance of neuroendocrine functions.
    Geenen V; Cormann N; Benhida A; Martens H; Achour I; Defresne MP; Robert F
    Eur J Med; 1992 Jun; 1(3):158-65. PubMed ID: 1341436
    [No Abstract]   [Full Text] [Related]  

  • 15. Thymic neuroendocrine self-antigens. Role in T-cell development and central T-cell self-tolerance.
    Geenen V; Martens H; Brilot F; Renard C; Franchimont D; Kecha O
    Ann N Y Acad Sci; 2000; 917():710-23. PubMed ID: 11268399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central tolerance: good but imperfect.
    Gallegos AM; Bevan MJ
    Immunol Rev; 2006 Feb; 209():290-6. PubMed ID: 16448550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thymic selection process induced by hybrid antibodies.
    Zepp F; Staerz UD
    Nature; 1988 Dec; 336(6198):473-5. PubMed ID: 3057386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evolutionary aspects of thymic T cell education to neuroendocrine self.
    Geenen V; Benhida A; Kecha O; Achour I; Vandermissen E; Vanneste Y; Goxe B; Martens H
    Acta Haematol; 1996; 95(3-4):263-7. PubMed ID: 8677753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presentation of neuroendocrine self in the thymus: a necessity for integrated evolution of the immune and neuroendocrine systems.
    Geenen V
    Ann N Y Acad Sci; 2012 Jul; 1261():42-8. PubMed ID: 22823392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restricted expression of transgenic HLA-DRA gene in thymic epithelial cells and its role in acquisition of T cell tolerance to self-superantigens and processed DR alpha-derived peptide.
    Fukui Y; Yamamoto K; Yokoyama N; Iwanaga T; Kurashima C; Esaki Y; Kimura A; Akashi T; Hirokawa K; Sasazuki T
    Eur J Immunol; 1993 Jul; 23(7):1678-86. PubMed ID: 8100779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 92.