These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Conformation preserved in a weak-to-strong or strong-to-weak [PSI+] conversion during transmission to Sup35 prion variants. Crist CG; Kurahashi H; Nakayashiki T; Nakamura Y Biochimie; 2006 May; 88(5):485-96. PubMed ID: 16364534 [TBL] [Abstract][Full Text] [Related]
4. Prion properties of the Sup35 protein of yeast Pichia methanolica. Kushnirov VV; Kochneva-Pervukhova NV; Chechenova MB; Frolova NS; Ter-Avanesyan MD EMBO J; 2000 Feb; 19(3):324-31. PubMed ID: 10654931 [TBL] [Abstract][Full Text] [Related]
5. Conformational diversity in a yeast prion dictates its seeding specificity. Chien P; Weissman JS Nature; 2001 Mar; 410(6825):223-7. PubMed ID: 11242084 [TBL] [Abstract][Full Text] [Related]
6. Generation of prion transmission barriers by mutational control of amyloid conformations. Chien P; DePace AH; Collins SR; Weissman JS Nature; 2003 Aug; 424(6951):948-51. PubMed ID: 12931190 [TBL] [Abstract][Full Text] [Related]
7. Protein-only transmission of three yeast prion strains. King CY; Diaz-Avalos R Nature; 2004 Mar; 428(6980):319-23. PubMed ID: 15029195 [TBL] [Abstract][Full Text] [Related]
8. The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI+] prion in yeast. Derkatch IL; Bradley ME; Zhou P; Liebman SW Curr Genet; 1999 Mar; 35(2):59-67. PubMed ID: 10079323 [TBL] [Abstract][Full Text] [Related]
9. Conformational variations in an infectious protein determine prion strain differences. Tanaka M; Chien P; Naber N; Cooke R; Weissman JS Nature; 2004 Mar; 428(6980):323-8. PubMed ID: 15029196 [TBL] [Abstract][Full Text] [Related]
10. Transformation of yeast by infectious prion particles. King CY; Wang HL; Chang HY Methods; 2006 May; 39(1):68-71. PubMed ID: 16759879 [TBL] [Abstract][Full Text] [Related]
11. [Fusion of glutathione S-transferase with the N-terminus of yeast Sup35p protein inhibits its prion-like properties]. Dagkesamanskaia AR; Kushnirov VV; Paushkin SV; Ter-Avanesian MD Genetika; 1997 May; 33(5):610-5. PubMed ID: 9273317 [TBL] [Abstract][Full Text] [Related]
12. The physical basis of how prion conformations determine strain phenotypes. Tanaka M; Collins SR; Toyama BH; Weissman JS Nature; 2006 Aug; 442(7102):585-9. PubMed ID: 16810177 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional regulation of SUP35 and SUP45 in Saccharomyces cerevisiae. Dagkessamanskaya A; Ter-Avanesyan M; Mager WH Yeast; 1997 Oct; 13(13):1265-74. PubMed ID: 9364750 [TBL] [Abstract][Full Text] [Related]
14. [Association between defects of karyogamy and translation termination in yeast Saccharomyces cerevisiae]. Borchsenius AS; Repnevskaia MV; Kurischko C; Inge-Vechtomov SG Genetika; 2005 Feb; 41(2):178-86. PubMed ID: 15810607 [TBL] [Abstract][Full Text] [Related]
15. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. True HL; Berlin I; Lindquist SL Nature; 2004 Sep; 431(7005):184-7. PubMed ID: 15311209 [TBL] [Abstract][Full Text] [Related]
16. [New aspects of research upon the yeast Saccharomyces cerevisiae [PSI+] prion]. Ishikawa T Postepy Biochem; 2007; 53(2):182-7. PubMed ID: 17969880 [TBL] [Abstract][Full Text] [Related]
17. The structural basis of yeast prion strain variants. Toyama BH; Kelly MJ; Gross JD; Weissman JS Nature; 2007 Sep; 449(7159):233-7. PubMed ID: 17767153 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of yeast prion aggregates in single living cells. Kawai-Noma S; Ayano S; Pack CG; Kinjo M; Yoshida M; Yasuda K; Taguchi H Genes Cells; 2006 Sep; 11(9):1085-96. PubMed ID: 16923127 [TBL] [Abstract][Full Text] [Related]
20. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Liu JJ; Lindquist S Nature; 1999 Aug; 400(6744):573-6. PubMed ID: 10448860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]