BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 11292341)

  • 21. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNase P: interface of the RNA and protein worlds.
    Evans D; Marquez SM; Pace NR
    Trends Biochem Sci; 2006 Jun; 31(6):333-41. PubMed ID: 16679018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria.
    Anantharaman V; Aravind L
    BMC Genomics; 2003 Aug; 4(1):34. PubMed ID: 12914674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inference for the initial stage of domain shuffling: tracing the evolutionary fate of the PIPSL retrogene in hominoids.
    Ohshima K; Igarashi K
    Mol Biol Evol; 2010 Nov; 27(11):2522-33. PubMed ID: 20525901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins.
    Tseng TT; Gratwick KS; Kollman J; Park D; Nies DH; Goffeau A; Saier MH
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):107-25. PubMed ID: 10941792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distance-tree analysis, distribution and co-presence of bilin- and flavin-binding prokaryotic photoreceptors for visible light.
    Mandalari C; Losi A; Gärtner W
    Photochem Photobiol Sci; 2013 Jul; 12(7):1144-57. PubMed ID: 23467500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fast method to predict protein interaction sites from sequences.
    Gallet X; Charloteaux B; Thomas A; Brasseur R
    J Mol Biol; 2000 Sep; 302(4):917-26. PubMed ID: 10993732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A case of convergent evolution of nucleic acid binding modules.
    Graumann P; Marahiel MA
    Bioessays; 1996 Apr; 18(4):309-15. PubMed ID: 8967899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.
    Galperin MY; Makarova KS; Wolf YI; Koonin EV
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and lipid transport mechanism of a StAR-related domain.
    Tsujishita Y; Hurley JH
    Nat Struct Biol; 2000 May; 7(5):408-14. PubMed ID: 10802740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure prediction in a post-genomic environment: a secondary and tertiary structural model for the initiation factor 5A family.
    Gerloff DL; Joachimiak M; Cohen FE; Cannarozzi GM; Chamberlin SG; Benner SA
    Biochem Biophys Res Commun; 1998 Oct; 251(1):173-81. PubMed ID: 9790926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions.
    Engelhardt H; Peters J
    J Struct Biol; 1998 Dec; 124(2-3):276-302. PubMed ID: 10049812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential coexistence of both bacterial and eukaryotic small RNA biogenesis and functional related protein homologs in Archaea.
    Li Y; Liu X; Huang L; Guo H; Wang XJ
    J Genet Genomics; 2010 Aug; 37(8):493-503. PubMed ID: 20816382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel family of channel-forming, autotransporting, bacterial virulence factors.
    Loveless BJ; Saier MH
    Mol Membr Biol; 1997; 14(3):113-23. PubMed ID: 9394291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes.
    Paulsen IT; Nguyen L; Sliwinski MK; Rabus R; Saier MH
    J Mol Biol; 2000 Aug; 301(1):75-100. PubMed ID: 10926494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homology among (betaalpha)(8) barrels: implications for the evolution of metabolic pathways.
    Copley RR; Bork P
    J Mol Biol; 2000 Nov; 303(4):627-41. PubMed ID: 11054297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1.
    Bonneau R; Baliga NS; Deutsch EW; Shannon P; Hood L
    Genome Biol; 2004; 5(8):R52. PubMed ID: 15287974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases.
    Makarova KS; Aravind L; Koonin EV
    Protein Sci; 1999 Aug; 8(8):1714-9. PubMed ID: 10452618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein folds, functions and evolution.
    Thornton JM; Orengo CA; Todd AE; Pearl FM
    J Mol Biol; 1999 Oct; 293(2):333-42. PubMed ID: 10529349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.