These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11292579)

  • 1. Effects of the antioxidants dihydrolipoic acid (DHLA) and probucol on xenobiotic-mediated methaemoglobin formation in diabetic and non-diabetic human erythrocytes in vitro(1).
    Coleman MD; Baker CD
    Environ Toxicol Pharmacol; 2001 Mar; 9(4):161-167. PubMed ID: 11292579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dihydrolipoic acid (DHLA), α-lipoic acid. N-acetyl cysteine and ascorbate on xenobiotic-mediated methaemoglobin formation in human erythrocytes in vitro.
    Coleman MD; Taylor CT
    Environ Toxicol Pharmacol; 2003 Sep; 14(3):121-7. PubMed ID: 21782671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lipoic acid and dihydrolipoic acid on 4-aminophenol-mediated erythrocytic toxicity in vitro.
    Coleman MD; Williams C; Haenen GR
    Basic Clin Pharmacol Toxicol; 2006 Sep; 99(3):225-9. PubMed ID: 16930295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The methaemoglobin forming and GSH depleting effects of dapsone and monoacetyl dapsone hydroxylamines in human diabetic and non-diabetic erythrocytes in vitro.
    Coleman MD; Holden LJ
    Environ Toxicol Pharmacol; 2004 May; 17(1):55-9. PubMed ID: 21782713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of xenobiotic-mediated methaemoglobin formation to assess the effects of thyroid hormones on diabetic and non-diabetic human erythrocytic oxidant defence mechanisms in vitro.
    Coleman MD; Gaskin CA; Fernandes S; Khanderia L
    Environ Toxicol Pharmacol; 2003 Jan; 13(1):15-9. PubMed ID: 21782644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of oxidised alpha-lipoic acid and alpha-tocopherol on xenobiotic-mediated methaemoglobin formation in diabetic and non-diabetic human erythrocytes in-vitro.
    Coleman MD; Walker CL
    Environ Toxicol Pharmacol; 2000 Jan; 8(2):127-132. PubMed ID: 10867372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preliminary evaluation of a novel method to monitor a triple antioxidant combination (vitamins E, C and α-lipoic acid) in diabetic volunteers using in vitro methaemoglobin formation.
    Coleman MD; Fernandes S; Khanderia L
    Environ Toxicol Pharmacol; 2003 Jun; 14(1-2):69-75. PubMed ID: 21782664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methaemoglobin formation due to nitrite, disulfiram, 4-aminophenol and monoacetyldapsone hydroxylamine in diabetic and non-diabetic human erythrocytes in vitro.
    Coleman MD; Hayes PJ; Jacobus DP
    Environ Toxicol Pharmacol; 1998 Jan; 5(1):61-7. PubMed ID: 21781851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lipoic acid and dihydrolipoic acid on total erythrocytic thiols under conditions of restricted glucose in vitro.
    Coleman MD; Rimmer GS; Haenen GR
    Basic Clin Pharmacol Toxicol; 2007 Feb; 100(2):139-44. PubMed ID: 17244264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring diabetic antioxidant status: a role for in vitro methaemoglobin formation.
    Coleman MD
    Environ Toxicol Pharmacol; 2001 Sep; 10(4):207-13. PubMed ID: 21782578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of dapsone hydroxylamine to dapsone during methaemoglobin formation in human erythrocytes in vitro. III: Effect of diabetes.
    Coleman MD; Simpson J; Jacobus DP
    Biochem Pharmacol; 1994 Oct; 48(7):1341-7. PubMed ID: 7945431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of in vitro methaemoglobin generation to study antioxidant status in the diabetic erythrocyte.
    Coleman MD
    Biochem Pharmacol; 2000 Nov; 60(10):1409-16. PubMed ID: 11020442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the differential sensitivity between diabetic and non-diabetic human erythrocytes to monoacetyl dapsone hydroxylamine-mediated methaemoglobin formation in vitro.
    Coleman MD; Ogg MS; Holmes JL; Gardiner JM; Jacobus DP
    Environ Toxicol Pharmacol; 1996 Apr; 1(2):97-102. PubMed ID: 21781668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of dapsone hydroxylamine to dapsone during methaemoglobin formation in human erythrocytes in vitro.
    Coleman MD; Jacobus DP
    Biochem Pharmacol; 1993 Mar; 45(5):1027-33. PubMed ID: 8461032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol chelation of Cu2+ by dihydrolipoic acid prevents human low density lipoprotein peroxidation.
    Lodge JK; Traber MG; Packer L
    Free Radic Biol Med; 1998 Aug; 25(3):287-97. PubMed ID: 9680174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant properties of alpha-lipoic acid: effects on red blood membrane permeability and adaptation of isolated rat heart to reversible ischemia.
    Ghibu S; Lauzier B; Delemasure S; Amoureux S; Sicard P; Vergely C; Muresan A; Mogosan C; Rochette L
    Mol Cell Biochem; 2009 Jan; 320(1-2):141-8. PubMed ID: 18839280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dihydrolipoic acid inhibits 15-lipoxygenase-dependent lipid peroxidation.
    Lapenna D; Ciofani G; Pierdomenico SD; Giamberardino MA; Cuccurullo F
    Free Radic Biol Med; 2003 Nov; 35(10):1203-9. PubMed ID: 14607519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactivation of benzocaine to a methaemoglobin-forming metabolite by rat and human microsomes in vitro.
    Coleman MD; Taylor CH
    Environ Toxicol Pharmacol; 1997 Feb; 3(1):47-52. PubMed ID: 21781757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dihydrolipoic acid lowers the redox activity of transition metal ions but does not remove them from the active site of enzymes.
    Suh JH; Zhu BZ; deSzoeke E; Frei B; Hagen TM
    Redox Rep; 2004; 9(1):57-61. PubMed ID: 15035828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.