BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 11292595)

  • 1. Ontogeny of hepatic enzymes involved in serine- and folate-dependent one-carbon metabolism in rabbits.
    Thompson HR; Jones GM; Narkewicz MR
    Am J Physiol Gastrointest Liver Physiol; 2001 May; 280(5):G873-8. PubMed ID: 11292595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogeny of serine hydroxymethyltransferase isoenzymes in fetal sheep liver, kidney, and placenta.
    Narkewicz MR; Moores RR; Battaglia FC; Frerman FF
    Mol Genet Metab; 1999 Dec; 68(4):473-80. PubMed ID: 10607477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic carbamazepine treatment and folate-dependent one-carbon metabolism.
    Carl GF
    Res Commun Chem Pathol Pharmacol; 1990 Sep; 69(3):357-60. PubMed ID: 2236902
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of folate-dependent enzymes and indices of folate status in laying hens supplemented with folic acid or 5-methyltetrahydrofolate.
    Tactacan GB; Jing M; Thiessen S; Rodriguez-Lecompte JC; O'Connor DL; Guenter W; House JD
    Poult Sci; 2010 Apr; 89(4):688-96. PubMed ID: 20308400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for intracellular partitioning of serine and glycine metabolism in Chinese hamster ovary cells.
    Narkewicz MR; Sauls SD; Tjoa SS; Teng C; Fennessey PV
    Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):991-6. PubMed ID: 8611185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of chronic valproate treatment on folate-dependent methyl biosynthesis in the rat.
    Carl GF
    Neurochem Res; 1986 May; 11(5):671-85. PubMed ID: 3088464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate.
    Stover P; Schirch V
    J Biol Chem; 1990 Aug; 265(24):14227-33. PubMed ID: 2201683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serine hydroxymethyltransferase isoforms are differentially inhibited by leucovorin: characterization and comparison of recombinant zebrafish serine hydroxymethyltransferases.
    Chang WN; Tsai JN; Chen BH; Huang HS; Fu TF
    Drug Metab Dispos; 2007 Nov; 35(11):2127-37. PubMed ID: 17664250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 5-formyltetrahydrofolate futile cycle reduces pathway stochasticity in an extended hybrid-stochastic model of folate-mediated one-carbon metabolism.
    Misselbeck K; Marchetti L; Priami C; Stover PJ; Field MS
    Sci Rep; 2019 Mar; 9(1):4322. PubMed ID: 30867454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro conversion of formate to serine: effect of tetrahydropteroylpolyglutamates and serine hydroxymethyltransferase on the rate of 10-formyltetrahydrofolate synthetase.
    Strong WB; Schirch V
    Biochemistry; 1989 Nov; 28(24):9430-9. PubMed ID: 2514800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of tetrahydropteroylpentaglutamate bound to 10-formyltetrahydrofolate dehydrogenase.
    Kim DW; Huang T; Schirch D; Schirch V
    Biochemistry; 1996 Dec; 35(49):15772-83. PubMed ID: 8961940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of folate-dependent enzymes from rabbit liver.
    Schirch V
    Methods Enzymol; 1997; 281():146-61. PubMed ID: 9250979
    [No Abstract]   [Full Text] [Related]  

  • 13. Serine hydroxymethyltransferase: role of glu75 and evidence that serine is cleaved by a retroaldol mechanism.
    Szebenyi DM; Musayev FN; di Salvo ML; Safo MK; Schirch V
    Biochemistry; 2004 Jun; 43(22):6865-76. PubMed ID: 15170323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The folate cycle and disease in humans.
    Fowler B
    Kidney Int Suppl; 2001 Feb; 78():S221-9. PubMed ID: 11169015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the glycine cleavage reaction: retention of C-2 hydrogens of glycine on the intermediate attached to H-protein and evidence for the inability of serine hydroxymethyltransferase to catalyze the glycine decarboxylation.
    Fujiwara K; Okamura-Ikeda K; Ohmura Y; Motokawa Y
    Arch Biochem Biophys; 1986 Nov; 251(1):121-7. PubMed ID: 3098173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of folate transporters in human placenta and implications for homocysteine metabolism.
    Solanky N; Requena Jimenez A; D'Souza SW; Sibley CP; Glazier JD
    Placenta; 2010 Feb; 31(2):134-43. PubMed ID: 20036773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of folate metabolic enzymes, methionine synthase and 5,10-methylenetetrahydrofolate reductase in human placenta.
    Shin JA; Kim YJ; Park H; Kim HK; Lee HY
    Gynecol Obstet Invest; 2014; 78(4):259-65. PubMed ID: 25277375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of hepatic folate metabolism in rats fed excess retinol.
    Fell D; Steele RD
    Life Sci; 1986 May; 38(21):1959-65. PubMed ID: 3086647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of chronic phenytoin treatment on tissue folate concentrations and on the activities of the methyl synthetic enzymes in the rat.
    Carl GF; Smith DB
    J Nutr; 1983 Nov; 113(11):2368-74. PubMed ID: 6355408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic basis of neural tube defects. II. Genes correlated with folate and methionine metabolism.
    Gos M; Szpecht-Potocka A
    J Appl Genet; 2002; 43(4):511-24. PubMed ID: 12441636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.