These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 11292695)
41. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Perry RD; Fetherston JD Microbes Infect; 2011 Sep; 13(10):808-17. PubMed ID: 21609780 [TBL] [Abstract][Full Text] [Related]
42. Pleiotropic effects of a Yersinia pestis fur mutation. Staggs TM; Fetherston JD; Perry RD J Bacteriol; 1994 Dec; 176(24):7614-24. PubMed ID: 8002585 [TBL] [Abstract][Full Text] [Related]
43. The crystal structure of the Yersinia pestis iron chaperone YiuA reveals a basic triad binding motif for the chelated metal. Radka CD; Chen D; DeLucas LJ; Aller SG Acta Crystallogr D Struct Biol; 2017 Nov; 73(Pt 11):921-939. PubMed ID: 29095164 [TBL] [Abstract][Full Text] [Related]
44. Identification and characterization of a novel ABC iron transport system, fit, in Escherichia coli. Ouyang Z; Isaacson R Infect Immun; 2006 Dec; 74(12):6949-56. PubMed ID: 16982838 [TBL] [Abstract][Full Text] [Related]
45. Attenuation of Chen Y; Song K; Chen X; Li Y; Lv R; Zhang Q; Cui Y; Bi Y; Han Y; Tan Y; Du Z; Yang R; Qi Z; Song Y Front Cell Infect Microbiol; 2022; 12():874773. PubMed ID: 35601093 [No Abstract] [Full Text] [Related]
46. Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bacterial genes involved in septicaemic plague. Chauvaux S; Rosso ML; Frangeul L; Lacroix C; Labarre L; Schiavo A; Marceau M; Dillies MA; Foulon J; Coppée JY; Médigue C; Simonet M; Carniel E Microbiology (Reading); 2007 Sep; 153(Pt 9):3112-3124. PubMed ID: 17768254 [TBL] [Abstract][Full Text] [Related]
47. A proteome reference map and virulence factors analysis of Yersinia pestis 91001. Zhou L; Ying W; Han Y; Chen M; Yan Y; Li L; Zhu Z; Zheng Z; Jia W; Yang R; Qian X J Proteomics; 2012 Jan; 75(3):894-907. PubMed ID: 22040741 [TBL] [Abstract][Full Text] [Related]
48. Identification of a locus involved in the utilization of iron by Actinobacillus pleuropneumoniae. Chin N; Frey J; Chang CF; Chang YF FEMS Microbiol Lett; 1996 Sep; 143(1):1-6. PubMed ID: 8807793 [TBL] [Abstract][Full Text] [Related]
49. Global analysis of iron assimilation and fur regulation in Yersinia pestis. Zhou D; Qin L; Han Y; Qiu J; Chen Z; Li B; Song Y; Wang J; Guo Z; Zhai J; Du Z; Wang X; Yang R FEMS Microbiol Lett; 2006 May; 258(1):9-17. PubMed ID: 16630248 [TBL] [Abstract][Full Text] [Related]
50. Characterization of outer membrane proteins of Yersinia pestis and Yersinia pseudotuberculosis strains isolated from India. Khushiramani R; Tuteja U; Shukla J; Batra HV Indian J Exp Biol; 2004 May; 42(5):508-14. PubMed ID: 15233478 [TBL] [Abstract][Full Text] [Related]
51. Consolidated plasmid Design for Stabilized Heterologous Production of the complex natural product Siderophore Yersiniabactin. Qi R; Swayambhu G; Bruno M; Zhang G; Pfeifer BA Biotechnol Prog; 2021 Mar; 37(2):e3103. PubMed ID: 33190425 [TBL] [Abstract][Full Text] [Related]
52. LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. Skryzpek E; Straley SC J Bacteriol; 1993 Jun; 175(11):3520-8. PubMed ID: 8501055 [TBL] [Abstract][Full Text] [Related]
53. Disruption of the NlpD lipoprotein of the plague pathogen Yersinia pestis affects iron acquisition and the activity of the twin-arginine translocation system. Tidhar A; Levy Y; Zauberman A; Vagima Y; Gur D; Aftalion M; Israeli O; Chitlaru T; Ariel N; Flashner Y; Zvi A; Mamroud E PLoS Negl Trop Dis; 2019 Jun; 13(6):e0007449. PubMed ID: 31170147 [TBL] [Abstract][Full Text] [Related]
54. Molecular cloning, iron-regulation and mutagenesis of the irp2 gene encoding HMWP2, a protein specific for the highly pathogenic Yersinia. Carniel E; Guiyoule A; Guilvout I; Mercereau-Puijalon O Mol Microbiol; 1992 Feb; 6(3):379-88. PubMed ID: 1552851 [TBL] [Abstract][Full Text] [Related]
55. The Haemophilus influenzae hFbpABC Fe3+ transporter: analysis of the membrane permease and development of a gallium-based screen for mutants. Anderson DS; Adhikari P; Weaver KD; Crumbliss AL; Mietzner TA J Bacteriol; 2007 Jul; 189(14):5130-41. PubMed ID: 17496104 [TBL] [Abstract][Full Text] [Related]
57. Reduced synthesis of the Ybt siderophore or production of aberrant Ybt-like molecules activates transcription of yersiniabactin genes in Yersinia pestis. Miller MC; Fetherston JD; Pickett CL; Bobrov AG; Weaver RH; DeMoll E; Perry RD Microbiology (Reading); 2010 Jul; 156(Pt 7):2226-2238. PubMed ID: 20413552 [TBL] [Abstract][Full Text] [Related]
58. The Yersinia pestis gcvB gene encodes two small regulatory RNA molecules. McArthur SD; Pulvermacher SC; Stauffer GV BMC Microbiol; 2006 Jun; 6():52. PubMed ID: 16768793 [TBL] [Abstract][Full Text] [Related]
59. The hmu locus of Yersinia pestis is essential for utilization of free haemin and haem--protein complexes as iron sources. Hornung JM; Jones HA; Perry RD Mol Microbiol; 1996 May; 20(4):725-39. PubMed ID: 9026634 [TBL] [Abstract][Full Text] [Related]
60. Genetic and functional analyses of the Actinobacillus actinomycetemcomitans AfeABCD siderophore-independent iron acquisition system. Rhodes ER; Tomaras AP; McGillivary G; Connerly PL; Actis LA Infect Immun; 2005 Jun; 73(6):3758-63. PubMed ID: 15908408 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]