BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11292796)

  • 41. Special roles for efflux systems in iron homeostasis of non-siderophore-producing cyanobacteria.
    Liu LM; Li DL; Deng B; Wang XW; Jiang HB
    Environ Microbiol; 2022 Feb; 24(2):551-565. PubMed ID: 33817959
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Iron transport in cyanobacteria - from molecules to communities.
    Qiu GW; Koedooder C; Qiu BS; Shaked Y; Keren N
    Trends Microbiol; 2022 Mar; 30(3):229-240. PubMed ID: 34175176
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reply to Lahiri
    Kosman DJ
    J Biol Chem; 2019 Jun; 294(24):9366. PubMed ID: 31201241
    [No Abstract]   [Full Text] [Related]  

  • 44. Iron-binding activity of FutA1 subunit of an ABC-type iron transporter in the cyanobacterium Synechocystis sp. Strain PCC 6803.
    Katoh H; Hagino N; Ogawa T
    Plant Cell Physiol; 2001 Aug; 42(8):823-7. PubMed ID: 11522907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from
    Bolton R; Machelett MM; Stubbs J; Axford D; Caramello N; Catapano L; Malý M; Rodrigues MJ; Cordery C; Tizzard GJ; MacMillan F; Engilberge S; von Stetten D; Tosha T; Sugimoto H; Worrall JAR; Webb JS; Zubkov M; Coles S; Mathieu E; Steiner RA; Murshudov G; Schrader TE; Orville AM; Royant A; Evans G; Hough MA; Owen RL; Tews I
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2308478121. PubMed ID: 38489389
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic Changes in the Thylakoid Proteome of Cyanobacteria during Light-Regulated Thylakoid Membrane Development.
    Huang F; Grauslys A; Huokko T; Caamaño Gutiérrez E; Jones AR; Liu LN
    Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068604
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insights into the physiological and genomic characterization of three bacterial isolates from a highly alkaline, terrestrial serpentinizing system.
    Thompson J; Barr C; Babcock-Adams L; Bird L; La Cava E; Garber A; Hongoh Y; Liu M; Nealson KH; Okamoto A; Repeta D; Suzuki S; Tacto C; Tashjian M; Merino N
    Front Microbiol; 2023; 14():1179857. PubMed ID: 37520355
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diversity and Evolution of Iron Uptake Pathways in Marine Cyanobacteria from the Perspective of the Coastal Strain
    Yong CW; Deng B; Liu LM; Wang XW; Jiang HB
    Appl Environ Microbiol; 2023 Jan; 89(1):e0173222. PubMed ID: 36533965
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface.
    Murdoch CC; Skaar EP
    Nat Rev Microbiol; 2022 Nov; 20(11):657-670. PubMed ID: 35641670
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The fciTABC and feoABI systems contribute to ferric citrate acquisition in Stenotrophomonas maltophilia.
    Liao CH; Lu HF; Huang HH; Chen Y; Li LH; Lin YT; Yang TC
    J Biomed Sci; 2022 Apr; 29(1):26. PubMed ID: 35477574
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Iron Reduction in
    Solyman MSM; Ujczo J; Brayton KA; Shaw DK; Schneider DA; Noh SM
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409307
    [No Abstract]   [Full Text] [Related]  

  • 52. The Role of Outer Membrane Protein(s) Harboring SLH/OprB-Domains in Extracellular Vesicles' Production in
    Cardoso D; Lima S; Matinha-Cardoso J; Tamagnini P; Oliveira P
    Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of Iron on Physiological Parameters and Intracellular Microcystin in Microcystis Panniformis Strain Isolated from a Reservoir in the Amazon.
    do Nascimento EL; Koschek PR; Dos Santos MEV; Pacheco ABF; Gomes AMDA; de Souza CMM; Bastos WR; de Oliveira Azevedo SMF
    Curr Microbiol; 2021 Jun; 78(6):2345-2354. PubMed ID: 33913000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. From the Ocean to the Lab-Assessing Iron Limitation in Cyanobacteria: An Interface Paper.
    Hunnestad AV; Vogel AIM; Armstrong E; Digernes MG; Ardelan MV; Hohmann-Marriott MF
    Microorganisms; 2020 Nov; 8(12):. PubMed ID: 33260337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Iron Uptake Mechanisms in Marine Phytoplankton.
    Sutak R; Camadro JM; Lesuisse E
    Front Microbiol; 2020; 11():566691. PubMed ID: 33250865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid Transcriptional Reprogramming Triggered by Alteration of the Carbon/Nitrogen Balance Has an Impact on Energy Metabolism in
    Gollan PJ; Muth-Pawlak D; Aro EM
    Life (Basel); 2020 Nov; 10(11):. PubMed ID: 33233741
    [No Abstract]   [Full Text] [Related]  

  • 57. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803.
    Mills LA; McCormick AJ; Lea-Smith DJ
    Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32149336
    [TBL] [Abstract][Full Text] [Related]  

  • 58. FeGenie: A Comprehensive Tool for the Identification of Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome Assemblies.
    Garber AI; Nealson KH; Okamoto A; McAllister SM; Chan CS; Barco RA; Merino N
    Front Microbiol; 2020; 11():37. PubMed ID: 32082281
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Manganese Homeostasis in Cyanobacteria.
    Eisenhut M
    Plants (Basel); 2019 Dec; 9(1):. PubMed ID: 31877921
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Depletion of the FtsH1/3 Proteolytic Complex Suppresses the Nutrient Stress Response in the Cyanobacterium
    Krynická V; Georg J; Jackson PJ; Dickman MJ; Hunter CN; Futschik ME; Hess WR; Komenda J
    Plant Cell; 2019 Dec; 31(12):2912-2928. PubMed ID: 31615847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.