BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 11292835)

  • 1. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis.
    Felizmenio-Quimio ME; Daly NL; Craik DJ
    J Biol Chem; 2001 Jun; 276(25):22875-82. PubMed ID: 11292835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure.
    Hernandez JF; Gagnon J; Chiche L; Nguyen TM; Andrieu JP; Heitz A; Trinh Hong T; Pham TT; Le Nguyen D
    Biochemistry; 2000 May; 39(19):5722-30. PubMed ID: 10801322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins.
    Heitz A; Hernandez JF; Gagnon J; Hong TT; Pham TT; Nguyen TM; Le-Nguyen D; Chiche L
    Biochemistry; 2001 Jul; 40(27):7973-83. PubMed ID: 11434766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knots in rings. The circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate.
    Cemazar M; Daly NL; Häggblad S; Lo KP; Yulyaningsih E; Craik DJ
    J Biol Chem; 2006 Mar; 281(12):8224-32. PubMed ID: 16547012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins.
    Poth AG; Colgrave ML; Philip R; Kerenga B; Daly NL; Anderson MA; Craik DJ
    ACS Chem Biol; 2011 Apr; 6(4):345-55. PubMed ID: 21194241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trypsin inhibition by macrocyclic and open-chain variants of the squash inhibitor MCoTI-II.
    Avrutina O; Schmoldt HU; Gabrijelcic-Geiger D; Le Nguyen D; Sommerhoff CP; Diederichsen U; Kolmar H
    Biol Chem; 2005 Dec; 386(12):1301-6. PubMed ID: 16336125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational analysis of the MCoTI-II plant defence knottin reveals a novel intermediate conformation that facilitates trypsin binding.
    Jones PM; George AM
    Sci Rep; 2016 Mar; 6():23174. PubMed ID: 26975976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot.
    Colgrave ML; Craik DJ
    Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies.
    Abdul Ghani H; Henriques ST; Huang YH; Swedberg JE; Schroeder CI; Craik DJ
    Biopolymers; 2017 Jan; 108(1):. PubMed ID: 27487329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides.
    Daly NL; Clark RJ; Craik DJ
    J Biol Chem; 2003 Feb; 278(8):6314-22. PubMed ID: 12482862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the role of the cyclic backbone in a squash trypsin inhibitor.
    Daly NL; Thorstholm L; Greenwood KP; King GJ; Rosengren KJ; Heras B; Martin JL; Craik DJ
    J Biol Chem; 2013 Dec; 288(50):36141-8. PubMed ID: 24169696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of a new family of cell-penetrating peptides: cyclic cell-penetrating peptides.
    Cascales L; Henriques ST; Kerr MC; Huang YH; Sweet MJ; Daly NL; Craik DJ
    J Biol Chem; 2011 Oct; 286(42):36932-43. PubMed ID: 21873420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and interactional homology of clinically potential trypsin inhibitors: molecular modelling of cucurbitaceae family peptides using the X-ray structure of MCTI-II.
    Chakraborty S; Bhattacharya S; Ghosh S; Bera AK; Haldar U; Pal AK; Mukhopadhyay BP; Banerjee A
    Protein Eng; 2000 Aug; 13(8):551-5. PubMed ID: 10964984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif.
    Craik DJ; Daly NL; Bond T; Waine C
    J Mol Biol; 1999 Dec; 294(5):1327-36. PubMed ID: 10600388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and characterization of a linear cyclotide from Viola odorata: implications for the processing of circular proteins.
    Ireland DC; Colgrave ML; Nguyencong P; Daly NL; Craik DJ
    J Mol Biol; 2006 Apr; 357(5):1522-35. PubMed ID: 16488428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif.
    Daly NL; Clark RJ; Plan MR; Craik DJ
    Biochem J; 2006 Feb; 393(Pt 3):619-26. PubMed ID: 16207177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery and applications of the plant cyclotides.
    Craik DJ
    Toxicon; 2010 Dec; 56(7):1092-102. PubMed ID: 20219513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cyclotide family of circular miniproteins: nature's combinatorial peptide template.
    Craik DJ; Cemazar M; Wang CK; Daly NL
    Biopolymers; 2006; 84(3):250-66. PubMed ID: 16440288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Squash inhibitors: from structural motifs to macrocyclic knottins.
    Chiche L; Heitz A; Gelly JC; Gracy J; Chau PT; Ha PT; Hernandez JF; Le-Nguyen D
    Curr Protein Pept Sci; 2004 Oct; 5(5):341-349. PubMed ID: 15551519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition and stabilization of a unique CPRI--structural motif in cucurbitaceae family trypsin inhibitor peptides: molecular dynamics based homology modeling using the X-ray structure of MCTI-II.
    Chakraborty S; Haldar U; Bera AK; Pal AK; Bhattacharya S; Ghosh S; Mukhopadhyay BP; Banerjee A
    J Biomol Struct Dyn; 2001 Feb; 18(4):569-77. PubMed ID: 11245252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.