These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11293255)

  • 1. Ligand design package (Ludi--MSI) applied to known inhibitors of the HIV-1 protease. Test of performance.
    Bogacewicz R; Trylska J; Geller M
    Acta Pol Pharm; 2000 Nov; 57 Suppl():25-8. PubMed ID: 11293255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating protein flexibility in structure-based drug discovery: using HIV-1 protease as a test case.
    Meagher KL; Carlson HA
    J Am Chem Soc; 2004 Oct; 126(41):13276-81. PubMed ID: 15479081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel computational tool for automated structure-based drug design.
    Böhm HJ
    J Mol Recognit; 1993 Sep; 6(3):131-7. PubMed ID: 8060670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CONCERTS: dynamic connection of fragments as an approach to de novo ligand design.
    Pearlman DA; Murcko MA
    J Med Chem; 1996 Apr; 39(8):1651-63. PubMed ID: 8648605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S; Mavromoustakos T; Chronakis N; Papadopoulos MG
    Bioorg Med Chem; 2008 Dec; 16(23):9957-74. PubMed ID: 18996019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease.
    Pierce AC; Rao G; Bemis GW
    J Med Chem; 2004 May; 47(11):2768-75. PubMed ID: 15139755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, synthesis, evaluation, and crystallographic-based structural studies of HIV-1 protease inhibitors with reduced response to the V82A mutation.
    Clemente JC; Robbins A; Graña P; Paleo MR; Correa JF; Villaverde MC; Sardina FJ; Govindasamy L; Agbandje-McKenna M; McKenna R; Dunn BM; Sussman F
    J Med Chem; 2008 Feb; 51(4):852-60. PubMed ID: 18215016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance.
    Perola E; Walters WP; Charifson PS
    Proteins; 2004 Aug; 56(2):235-49. PubMed ID: 15211508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational titration analysis of a multiprotic HIV-1 protease-ligand complex.
    Spyrakis F; Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE
    J Am Chem Soc; 2004 Sep; 126(38):11764-5. PubMed ID: 15382890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new structural theme in C2-symmetric HIV-1 protease inhibitors: ortho-substituted P1/P1' side chains.
    Wannberg J; Sabnis YA; Vrang L; Samuelsson B; Karlén A; Hallberg A; Larhed M
    Bioorg Med Chem; 2006 Aug; 14(15):5303-15. PubMed ID: 16621572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1.
    Frecer V; Burello E; Miertus S
    Bioorg Med Chem; 2005 Sep; 13(18):5492-501. PubMed ID: 16054372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A semiempirical free energy force field with charge-based desolvation.
    Huey R; Morris GM; Olson AJ; Goodsell DS
    J Comput Chem; 2007 Apr; 28(6):1145-52. PubMed ID: 17274016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the open-flap conformation of HIV-1 protease with pyrrolidine-based inhibitors.
    Böttcher J; Blum A; Dörr S; Heine A; Diederich WE; Klebe G
    ChemMedChem; 2008 Sep; 3(9):1337-44. PubMed ID: 18720485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations.
    Lepsík M; Kríz Z; Havlas Z
    Proteins; 2004 Nov; 57(2):279-93. PubMed ID: 15340915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug design: new inhibitors for HIV-1 protease based on Nelfinavir as lead.
    Perez MA; Fernandes PA; Ramos MJ
    J Mol Graph Model; 2007 Oct; 26(3):634-42. PubMed ID: 17459746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases.
    Sadiq SK; Wright D; Watson SJ; Zasada SJ; Stoica I; Coveney PV
    J Chem Inf Model; 2008 Sep; 48(9):1909-19. PubMed ID: 18710212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D; Liu MS; Ji B; Hwang K; Huang Y
    J Chem Phys; 2009 Jun; 130(21):215102. PubMed ID: 19508101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid screening for HIV-1 protease inhibitor leads through X-ray diffraction.
    Pillai B; Kannan KK; Bhat SV; Hosur MV
    Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):594-6. PubMed ID: 14993705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding.
    Thorsteinsdottir HB; Schwede T; Zoete V; Meuwly M
    Proteins; 2006 Nov; 65(2):407-23. PubMed ID: 16941468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.