These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11293272)

  • 1. Self-organizing neural networks for modeling 3D QSAR--a comparative study.
    Polański J; Walczak B; Gieleciak R; Łukaszyk S
    Acta Pol Pharm; 2000 Nov; 57 Suppl():76-9. PubMed ID: 11293272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The non-grid technique for modeling 3D QSAR using self-organizing neural network (SOM) and PLS analysis: application to steroids and colchicinoids.
    Polański J
    SAR QSAR Environ Res; 2000; 11(3-4):245-61. PubMed ID: 10969874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-organizing neural network for modeling 3D QSAR of colchicinoids.
    Polański J
    Acta Biochim Pol; 2000; 47(1):37-45. PubMed ID: 10961676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations.
    So SS; Karplus M
    J Med Chem; 1997 Dec; 40(26):4347-59. PubMed ID: 9435904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organizing molecular field analysis: a tool for structure-activity studies.
    Robinson DD; Winn PJ; Lyne PD; Richards WG
    J Med Chem; 1999 Feb; 42(4):573-83. PubMed ID: 10052964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atom-based 3D-chiral quadratic indices. Part 2: prediction of the corticosteroid-binding globulinbinding affinity of the 31 benchmark steroids data set.
    Castillo-Garit JA; Marrero-Ponce Y; Torrens F
    Bioorg Med Chem; 2006 Apr; 14(7):2398-408. PubMed ID: 16325409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling steric and electronic effects in 3D- and 4D-QSAR schemes: predicting benzoic pK(a) values and steroid CBG binding affinities.
    Polanski J; Bak A
    J Chem Inf Comput Sci; 2003; 43(6):2081-92. PubMed ID: 14632460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GRID formalism for the comparative molecular surface analysis: application to the CoMFA benchmark steroids, azo dyes, and HEPT derivatives.
    Polanski J; Gieleciak R; Magdziarz T; Bak A
    J Chem Inf Comput Sci; 2004; 44(4):1423-35. PubMed ID: 15272850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling robust QSAR.
    Polanski J; Bak A; Gieleciak R; Magdziarz T
    J Chem Inf Model; 2006; 46(6):2310-8. PubMed ID: 17125174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of QSAR sets with a self-organizing map.
    Guha R; Serra JR; Jurs PC
    J Mol Graph Model; 2004 Sep; 23(1):1-14. PubMed ID: 15331049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release.
    Zheng F; Bayram E; Sumithran SP; Ayers JT; Zhan CG; Schmitt JD; Dwoskin LP; Crooks PA
    Bioorg Med Chem; 2006 May; 14(9):3017-37. PubMed ID: 16431111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel alignment method of small molecules using the Hopfield Neural Network.
    Arakawa M; Hasegawa K; Funatsu K
    J Chem Inf Comput Sci; 2003; 43(5):1390-5. PubMed ID: 14502471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling robust QSAR. 1. Coding molecules in 3D-QSAR--from a point to surface sectors and molecular volumes.
    Gieleciak R; Magdziarz T; Bak A; Polanski J
    J Chem Inf Model; 2005; 45(5):1447-55. PubMed ID: 16180922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural networks-based drug discovery approach and its application for designing aldose reductase inhibitors.
    Hu L; Chen G; Chau RM
    J Mol Graph Model; 2006 Jan; 24(4):244-53. PubMed ID: 16226911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular docking and 3D QSAR studies on 1-amino-2-phenyl-4-(piperidin-1-yl)-butanes based on the structural modeling of human CCR5 receptor.
    Xu Y; Liu H; Niu C; Luo C; Luo X; Shen J; Chen K; Jiang H
    Bioorg Med Chem; 2004 Dec; 12(23):6193-208. PubMed ID: 15519163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The receptor-like neural network for modeling corticosteroid and testosterone binding globulins.
    Polański J
    J Chem Inf Comput Sci; 1997; 37(3):553-61. PubMed ID: 9177002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: application to steroid, azo dye, and benzoic acid series.
    Bak A; Polanski J
    J Chem Inf Model; 2007; 47(4):1469-80. PubMed ID: 17567123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a structural model for NF-kappaB inhibition of sesquiterpene lactones using self-organizing neural networks.
    Wagner S; Hofmann A; Siedle B; Terfloth L; Merfort I; Gasteiger J
    J Med Chem; 2006 Apr; 49(7):2241-52. PubMed ID: 16570920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S
    J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks.
    Prado-Prado FJ; Martinez de la Vega O; Uriarte E; Ubeira FM; Chou KC; González-Díaz H
    Bioorg Med Chem; 2009 Jan; 17(2):569-75. PubMed ID: 19112024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.