These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11293714)

  • 1. X-ray photoelectron spectroscopic studies of the oxidation of aluminium by liquid water monitored in an anaerobic cell.
    Rotole JA; Sherwood PM
    Fresenius J Anal Chem; 2001 Feb; 369(3-4):342-50. PubMed ID: 11293714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambient Pressure Hard X-ray Photoelectron Spectroscopy for Functional Material Systems as Fuel Cells under Working Conditions.
    Takagi Y; Uruga T; Tada M; Iwasawa Y; Yokoyama T
    Acc Chem Res; 2018 Mar; 51(3):719-727. PubMed ID: 29509021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray photoelectron spectroscopy study of the passivation of NiAl(100) by water vapor.
    Cai N; Liu Q; Tong X; Zhou G
    Langmuir; 2014 Jan; 30(3):774-83. PubMed ID: 24417205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. U2O5 Film Preparation via UO2 Deposition by Direct Current Sputtering and Successive Oxidation and Reduction with Atomic Oxygen and Atomic Hydrogen.
    Gouder T; Huber F; Eloirdi R; Caciuffo R
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchrotron x-ray photoemission study of soft x-ray processed ultrathin glycine-water ice films.
    Tzvetkov G; Netzer FP
    J Chem Phys; 2011 May; 134(20):204704. PubMed ID: 21639464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution soft X-ray photoelectron spectroscopy of liquid water.
    Nishizawa K; Kurahashi N; Sekiguchi K; Mizuno T; Ogi Y; Horio T; Oura M; Kosugi N; Suzuki T
    Phys Chem Chem Phys; 2011 Jan; 13(2):413-7. PubMed ID: 21063619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical utility of valence band X-ray photoelectron spectroscopy of iron and its oxides, with spectral interpretation by cluster and band structure calculations.
    Temesghen W; Sherwood PM
    Anal Bioanal Chem; 2002 Aug; 373(7):601-8. PubMed ID: 12185571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic response of aluminum-bearing minerals.
    Prange MP; Zhang X; Ilton ES; Kovarik L; Engelhard MH; Kerisit SN
    J Chem Phys; 2018 Jul; 149(2):024502. PubMed ID: 30007383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H₂O Dissociation-Induced Aluminum Oxide Growth on Oxidized Al(111) Surfaces.
    Liu Q; Tong X; Zhou G
    Langmuir; 2015 Dec; 31(48):13117-26. PubMed ID: 26550986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray Photoelectron Spectroscopic Studies of Interactions in Multicomponent Metal and Metal Oxide Thin Films.
    Winograd N; Baitinger WE; Amy JW; Munarin JA
    Science; 1974 May; 184(4136):565-7. PubMed ID: 17755031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-Ray and ultraviolet photoelectron spectroscopy studies of Uranium(IV),(V) and(VI) exposed to H
    El Jamal G; Gouder T; Eloirdi R; Jonsson M
    Dalton Trans; 2021 Jan; 50(2):729-738. PubMed ID: 33346296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental and theoretical study of the photoelectron spectra of
    Trofimov AB; Powis I; Menzies RC; Holland DMP; Antonsson E; Patanen M; Nicolas C; Miron C; Skitnevskaya AD; Gromov EV; Köppel H
    J Chem Phys; 2018 Aug; 149(7):074306. PubMed ID: 30134699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vapor-phase hydrothermal synthesis of rutile TiO₂ nanostructured film with exposed pyramid-shaped (111) surface and superiorly photoelectrocatalytic performance.
    Chen J; Zhang H; Liu P; Wang Y; Liu X; Li G; An T; Zhao H
    J Colloid Interface Sci; 2014 Sep; 429():53-61. PubMed ID: 24935189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure of a vapor-deposited metal-free phthalocyanine thin film.
    Alfredsson Y; Brena B; Nilson K; Ahlund J; Kjeldgaard L; Nyberg M; Luo Y; Mårtensson N; Sandell A; Puglia C; Siegbahn H
    J Chem Phys; 2005 Jun; 122(21):214723. PubMed ID: 15974778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy.
    Milosev I; Metikos-Huković M; Strehblow HH
    Biomaterials; 2000 Oct; 21(20):2103-13. PubMed ID: 10966021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray photoelectron spectroscopic and electrochemical impedance spectroscopic analysis of RuO2-Ta2O5 thick film pH sensors.
    Manjakkal L; Cvejin K; Kulawik J; Zaraska K; Socha RP; Szwagierczak D
    Anal Chim Acta; 2016 Aug; 931():47-56. PubMed ID: 27282750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions.
    Baltrusaitis J; Jayaweera PM; Grassian VH
    Phys Chem Chem Phys; 2009 Oct; 11(37):8295-305. PubMed ID: 19756286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and structure of ultrathin alumina films on the (1 1 0) surface of γ-Al4Cu9 complex metallic alloy.
    Wardé M; Ledieu J; Serkovic Loli LN; Herinx M; de Weerd MC; Fournée V; Moal SL; Barthés-Labrousse MG
    J Phys Condens Matter; 2014 Dec; 26(48):485009. PubMed ID: 25374118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valence band behaviour of zirconium oxide, Photoelectron and Auger spectroscopy study.
    Azdad Z; Marot L; Moser L; Steiner R; Meyer E
    Sci Rep; 2018 Nov; 8(1):16251. PubMed ID: 30389986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular composition and orientation of interstitial versus surface silicon oxides for Si(111)/SiO2 and Si(100)/SiO2 interfaces using FT-IR and X-ray photoelectron spectroscopies.
    Kandilioti G; Siokou A; Papaefthimiou V; Kennou S; Gregoriou VG
    Appl Spectrosc; 2003 Jun; 57(6):628-35. PubMed ID: 14658694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.