These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11293787)

  • 1. Evolution of DNA in heterochromatin: the Drosophila melanogaster sibling species subgroup as a resource.
    Lohe AR; Roberts PA
    Genetica; 2000; 109(1-2):125-30. PubMed ID: 11293787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Analysis of Satellite DNA in the
    Jagannathan M; Warsinger-Pepe N; Watase GJ; Yamashita YM
    G3 (Bethesda); 2017 Feb; 7(2):693-704. PubMed ID: 28007840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive.
    Larracuente AM
    BMC Evol Biol; 2014 Nov; 14():233. PubMed ID: 25424548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleiotropic effects associated with the deletion of heterochromatin surrounding rDNA on the X chromosome of Drosophila.
    Hilliker AJ; Appels R
    Chromosoma; 1982; 86(4):469-90. PubMed ID: 6816533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the evolution of Yeti, a Drosophila melanogaster heterochromatin gene.
    Moschetti R; Celauro E; Cruciani F; Caizzi R; Dimitri P
    PLoS One; 2014; 9(11):e113010. PubMed ID: 25405891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparative analysis of the localization and mobility of retrotransposons in sibling species Drosophila simulans and Drosophila melanogaster].
    Leĭbovich BA; Glushkova IV; Pasiukova EG; Beliaeva ES; Gvozdev VA
    Genetika; 1992 Apr; 28(4):85-97. PubMed ID: 1322343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incompatibility between X chromosome factor and pericentric heterochromatic region causes lethality in hybrids between Drosophila melanogaster and its sibling species.
    Cattani MV; Presgraves DC
    Genetics; 2012 Jun; 191(2):549-59. PubMed ID: 22446316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The characterization of DINE-1, a short, interspersed repetitive element present on chromosome and in the centric heterochromatin of Drosophila melanogaster.
    Locke J; Howard LT; Aippersbach N; Podemski L; Hodgetts RB
    Chromosoma; 1999 Nov; 108(6):356-66. PubMed ID: 10591995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: ananassae and melanogaster.
    Roy V; Monti-Dedieu L; Chaminade N; Siljak-Yakovlev S; Aulard S; Lemeunier F; Montchamp-Moreau C
    Heredity (Edinb); 2005 Apr; 94(4):388-95. PubMed ID: 15726113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identical satellite DNA sequences in sibling species of Drosophila.
    Lohe AR; Brutlag DL
    J Mol Biol; 1987 Mar; 194(2):161-70. PubMed ID: 3112413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular organization of heterochromatin in malaria mosquitoes of the Anopheles maculipennis subgroup.
    Grushko OG; Sharakhova MV; Stegnii VN; Sharakhov IV
    Gene; 2009 Dec; 448(2):192-7. PubMed ID: 19664695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitotic and polytene chromosomes: comparisons between Drosophila melanogaster and Drosophila simulans.
    Aulard S; Monti L; Chaminade N; Lemeunier F
    Genetica; 2004 Mar; 120(1-3):137-50. PubMed ID: 15088654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes.
    Kuhn GC; Küttler H; Moreira-Filho O; Heslop-Harrison JS
    Mol Biol Evol; 2012 Jan; 29(1):7-11. PubMed ID: 21712468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal segregation of a foreign-species chromosome during Drosophila female meiosis despite extensive heterochromatin divergence.
    Gilliland WD; Colwell EM; Osiecki DM; Park S; Lin D; Rathnam C; Barbash DA
    Genetics; 2015 Jan; 199(1):73-83. PubMed ID: 25406466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution of two paralogous tandemly repeated heterochromatic gene clusters linked to the X and Y chromosomes of Drosophila melanogaster.
    Kogan GL; Epstein VN; Aravin AA; Gvozdev VA
    Mol Biol Evol; 2000 May; 17(5):697-702. PubMed ID: 10779530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of He-T DNA sequences in the pericentric regions of Drosophila chromosomes.
    Traverse KL; Pardue ML
    Chromosoma; 1989 Jan; 97(4):261-71. PubMed ID: 2565198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern of chromosomal localization of the Hoppel transposable element family in the Drosophila melanogaster subgroup.
    Coelho PA; Queiroz-Machado J; Hartl D; Sunkel CE
    Chromosome Res; 1998 Aug; 6(5):385-95. PubMed ID: 9872668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Genomic Analyses Provide New Insights into the Evolutionary Dynamics of Heterochromatin in Drosophila.
    Caizzi R; Moschetti R; Piacentini L; Fanti L; Marsano RM; Dimitri P
    PLoS Genet; 2016 Aug; 12(8):e1006212. PubMed ID: 27513559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long spacers among ribosomal genes of Drosophila melanogaster.
    Indik ZK; Tartof KD
    Nature; 1980 Apr; 284(5755):477-9. PubMed ID: 6244507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of transposable elements in the heterochromatin and on the Y chromosome of Drosophila simulans and Drosophila melanogaster.
    Junakovic N; Terrinoni A; Di Franco C; Vieira C; Loevenbruck C
    J Mol Evol; 1998 Jun; 46(6):661-8. PubMed ID: 9608048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.