BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 11294656)

  • 1. Structural and dynamic perturbations induced by heme binding in cytochrome b5.
    Falzone CJ; Wang Y; Vu BC; Scott NL; Bhattacharya S; Lecomte JT
    Biochemistry; 2001 Apr; 40(15):4879-91. PubMed ID: 11294656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A relationship between heme binding and protein stability in cytochrome b5.
    Mukhopadhyay K; Lecomte JT
    Biochemistry; 2004 Sep; 43(38):12227-36. PubMed ID: 15379561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design challenges for hemoproteins: the solution structure of apocytochrome b5.
    Falzone CJ; Mayer MR; Whiteman EL; Moore CD; Lecomte JT
    Biochemistry; 1996 May; 35(21):6519-26. PubMed ID: 8639599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Backbone dynamics of apocytochrome b5 in its native, partially folded state.
    Bhattacharya S; Falzone CJ; Lecomte JT
    Biochemistry; 1999 Feb; 38(8):2577-89. PubMed ID: 10029553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural propensities in the heme binding region of apocytochrome b5. II. Heme conjugates.
    Davis RB; Lecomte JT
    Biopolymers; 2008; 90(4):556-66. PubMed ID: 18398854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarities in structure between holocytochrome b5 and apocytochrome b5: NMR studies of the histidine residues.
    Moore CD; al-Misky ON; Lecomte JT
    Biochemistry; 1991 Aug; 30(34):8357-65. PubMed ID: 1883823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A test of the relationship between sequence and structure in proteins: excision of the heme binding site in apocytochrome b5.
    Constans AJ; Mayer MR; Sukits SF; Lecomte JT
    Protein Sci; 1998 Sep; 7(9):1983-93. PubMed ID: 9761479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural consequences of heme removal: molecular dynamics simulations of rat and bovine apocytochrome b5.
    Storch EM; Daggett V
    Biochemistry; 1996 Sep; 35(36):11596-604. PubMed ID: 8794739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an independent structural unit in apocytochrome b5.
    Moore CD; Lecomte JT
    Biochemistry; 1993 Jan; 32(1):199-207. PubMed ID: 8418838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insertion of the cytochrome b5 heme-binding loop into an SH3 domain. Effects on structure and stability, and clues about the cytochrome's architecture.
    Knappenberger JA; Kraemer-Pecore CM; Lecomte JT
    Protein Sci; 2004 Nov; 13(11):2899-908. PubMed ID: 15459337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and thermodynamic encoding in the sequence of rat microsomal cytochrome b(5).
    Lecomte JT; Mukhopadhyay K; Pond MP
    Biopolymers; 2008 May; 89(5):428-42. PubMed ID: 18041061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of differences in the physical properties of the equilibrium forms of cytochrome b5 revealed through high-resolution NMR structures and backbone dynamic analyses.
    Dangi B; Sarma S; Yan C; Banville DL; Guiles RD
    Biochemistry; 1998 Jun; 37(23):8289-302. PubMed ID: 9622481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural propensities in the heme binding region of apocytochrome b5. I. Free peptides.
    Davis RB; Lecomte JT
    Biopolymers; 2008; 90(4):544-55. PubMed ID: 18398853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The solution structure of oxidized rat microsomal cytochrome b5.
    Arnesano F; Banci L; Bertini I; Felli IC
    Biochemistry; 1998 Jan; 37(1):173-84. PubMed ID: 9425037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural properties of apocytochrome b5: presence of a stable native core.
    Moore CD; Lecomte JT
    Biochemistry; 1990 Feb; 29(8):1984-9. PubMed ID: 2328231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural consequences of b- to c-type heme conversion in oxidized Escherichia coli cytochrome b562.
    Arnesano F; Banci L; Bertini I; Ciofi-Baffoni S; Woodyear TL; Johnson CM; Barker PD
    Biochemistry; 2000 Feb; 39(6):1499-514. PubMed ID: 10684632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5.
    Lee KB; La Mar GN; Pandey RK; Rezzano IN; Mansfield KE; Smith KM
    Biochemistry; 1991 Feb; 30(7):1878-87. PubMed ID: 1993202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray crystallography, CD and kinetic studies revealed the essence of the abnormal behaviors of the cytochrome b5 Phe35-->Tyr mutant.
    Yao P; Wu J; Wang YH; Sun BY; Xia ZX; Huang ZX
    Eur J Biochem; 2002 Sep; 269(17):4287-96. PubMed ID: 12199707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functions of fluctuation in the heme-binding loops of cytochrome b5 revealed in the process of heme incorporation.
    Ihara M; Takahashi S; Ishimori K; Morishima I
    Biochemistry; 2000 May; 39(20):5961-70. PubMed ID: 10821667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of cytochromes b5 from insects and vertebrates.
    Wang L; Cowley AB; Terzyan S; Zhang X; Benson DR
    Proteins; 2007 May; 67(2):293-304. PubMed ID: 17299762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.