These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11295239)

  • 1. Developmental changes in the expression of GABA(A) receptor subunits (alpha(1), alpha(2), alpha(3)) in the cat visual cortex and the effects of dark rearing.
    Chen L; Yang C; Mower GD
    Brain Res Mol Brain Res; 2001 Mar; 88(1-2):135-43. PubMed ID: 11295239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental changes in the expression of NMDA receptor subunits (NR1, NR2A, NR2B) in the cat visual cortex and the effects of dark rearing.
    Chen L; Cooper NG; Mower GD
    Brain Res Mol Brain Res; 2000 May; 78(1-2):196-200. PubMed ID: 10891601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laminar distribution of NMDA receptor subunit (NR1, NR2A, NR2B) expression during the critical period in cat visual cortex.
    Mower GD; Chen L
    Brain Res Mol Brain Res; 2003 Nov; 119(1):19-27. PubMed ID: 14597226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABAA receptor maturation in relation to eye opening in the rat visual cortex.
    Heinen K; Bosman LW; Spijker S; van Pelt J; Smit AB; Voorn P; Baker RE; Brussaard AB
    Neuroscience; 2004; 124(1):161-71. PubMed ID: 14960348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fos expression during the critical period in visual cortex: differences between normal and dark reared cats.
    Mower GD; Kaplan IV
    Brain Res Mol Brain Res; 1999 Feb; 64(2):264-9. PubMed ID: 9931501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) in the visual cortex of normal and dark-reared cats.
    Mower GD; Guo Y
    Brain Res Dev Brain Res; 2001 Jan; 126(1):65-74. PubMed ID: 11172887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experience-dependent regulation of functional maps and synaptic protein expression in the cat visual cortex.
    Jaffer S; Vorobyov V; Kind PC; Sengpiel F
    Eur J Neurosci; 2012 Apr; 35(8):1281-94. PubMed ID: 22512257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended plasticity of visual cortex in dark-reared animals may result from prolonged expression of cpg15-like genes.
    Lee WC; Nedivi E
    J Neurosci; 2002 Mar; 22(5):1807-15. PubMed ID: 11880509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bidirectional regulation of Munc13-3 protein expression by age and dark rearing during the critical period in mouse visual cortex.
    Yang CB; Kiser PJ; Zheng YT; Varoqueaux F; Mower GD
    Neuroscience; 2007 Dec; 150(3):603-8. PubMed ID: 17997229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immediate early gene expression in the visual cortex of normal and dark reared cats: differences between fos and egr-1.
    Mower GD; Kaplan IV
    Brain Res Mol Brain Res; 2002 Sep; 105(1-2):157-60. PubMed ID: 12399119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of dark rearing on the time course of the critical period in cat visual cortex.
    Mower GD
    Brain Res Dev Brain Res; 1991 Feb; 58(2):151-8. PubMed ID: 2029762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Munc13-3 as a candidate gene for critical-period neuroplasticity in visual cortex.
    Yang CB; Zheng YT; Li GY; Mower GD
    J Neurosci; 2002 Oct; 22(19):8614-8. PubMed ID: 12351735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of human visual cortex: a balance between excitatory and inhibitory plasticity mechanisms.
    Murphy KM; Beston BR; Boley PM; Jones DG
    Dev Psychobiol; 2005 Apr; 46(3):209-21. PubMed ID: 15772972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of α-chimaerin as a candidate gene for critical period neuronal plasticity in cat and mouse visual cortex.
    Yang CB; Zheng YT; Kiser PJ; Mower GD
    BMC Neurosci; 2011 Jul; 12():70. PubMed ID: 21767388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age and dark rearing bidirectionally regulate the level and laminar pattern of expression of Abelson interacting protein 2 (Abi-2): a novel candidate visual cortical plasticity gene.
    Yang CB; Kiser PJ; Zheng YT; Mower GD
    J Mol Neurosci; 2013 Nov; 51(3):647-54. PubMed ID: 23828391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of disabled-1 as a candidate gene for critical period neuroplasticity in cat and mouse visual cortex.
    Yang CB; Zheng YT; Kiser PJ; Mower GD
    Eur J Neurosci; 2006 May; 23(10):2804-8. PubMed ID: 16817883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid critical period induction by tonic inhibition in visual cortex.
    Iwai Y; Fagiolini M; Obata K; Hensch TK
    J Neurosci; 2003 Jul; 23(17):6695-702. PubMed ID: 12890762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex.
    Mower GD; Caplan CJ; Christen WG; Duffy FH
    J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in NMDA receptor-mediated visual activity in the rat superior colliculus, and the effect of dark rearing.
    Binns KE; Salt TE
    Exp Brain Res; 1998 Jun; 120(3):335-44. PubMed ID: 9628420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.