BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 11295358)

  • 1. Electron spin resonance characterization of the NAD(P)H oxidase in vascular smooth muscle cells.
    Sorescu D; Somers MJ; Lassègue B; Grant S; Harrison DG; Griendling KK
    Free Radic Biol Med; 2001 Mar; 30(6):603-12. PubMed ID: 11295358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overestimation of NADH-driven vascular oxidase activity due to lucigenin artifacts.
    Janiszewski M; Souza HP; Liu X; Pedro MA; Zweier JL; Laurindo FR
    Free Radic Biol Med; 2002 Mar; 32(5):446-53. PubMed ID: 11864784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD(P)H oxidase participates in the signaling events in high glucose-induced proliferation of vascular smooth muscle cells.
    Lee HS; Son SM; Kim YK; Hong KW; Kim CD
    Life Sci; 2003 May; 72(24):2719-30. PubMed ID: 12679189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin-stimulated NADH/NAD+ redox state increases NAD(P)H oxidase activity in cultured rat vascular smooth muscle cells.
    Yang M; Kahn AM
    Am J Hypertens; 2006 Jun; 19(6):587-92. PubMed ID: 16733230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular oxidant stress early after balloon injury: evidence for increased NAD(P)H oxidoreductase activity.
    Souza HP; Souza LC; Anastacio VM; Pereira AC; Junqueira ML; Krieger JE; da Luz PL; Augusto O; Laurindo FR
    Free Radic Biol Med; 2000 Apr; 28(8):1232-42. PubMed ID: 10889453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysophosphatidylcholine enhances superoxide anions production via endothelial NADH/NADPH oxidase.
    Takeshita S; Inoue N; Gao D; Rikitake Y; Kawashima S; Tawa R; Sakurai H; Yokoyama M
    J Atheroscler Thromb; 2000; 7(4):238-46. PubMed ID: 11521688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel gp91(phox) homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways.
    Lassègue B; Sorescu D; Szöcs K; Yin Q; Akers M; Zhang Y; Grant SL; Lambeth JD; Griendling KK
    Circ Res; 2001 May; 88(9):888-94. PubMed ID: 11348997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin-stimulated NAD(P)H oxidase activity increases migration of cultured vascular smooth muscle cells.
    Yang M; Foster E; Kahn AM
    Am J Hypertens; 2005 Oct; 18(10):1329-34. PubMed ID: 16202857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems.
    Li Y; Zhu H; Kuppusamy P; Roubaud V; Zweier JL; Trush MA
    J Biol Chem; 1998 Jan; 273(4):2015-23. PubMed ID: 9442038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II.
    Touyz RM; Chen X; Tabet F; Yao G; He G; Quinn MT; Pagano PJ; Schiffrin EL
    Circ Res; 2002 Jun; 90(11):1205-13. PubMed ID: 12065324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of NAD(P)H oxidase by associated protein disulfide isomerase in vascular smooth muscle cells.
    Janiszewski M; Lopes LR; Carmo AO; Pedro MA; Brandes RP; Santos CX; Laurindo FR
    J Biol Chem; 2005 Dec; 280(49):40813-9. PubMed ID: 16150729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells.
    Touyz RM; Yao G; Viel E; Amiri F; Schiffrin EL
    J Hypertens; 2004 Jun; 22(6):1141-9. PubMed ID: 15167449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.
    Griendling KK; Minieri CA; Ollerenshaw JD; Alexander RW
    Circ Res; 1994 Jun; 74(6):1141-8. PubMed ID: 8187280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitation of superoxide generation and substrate utilization by vascular NAD(P)H oxidase.
    Souza HP; Liu X; Samouilov A; Kuppusamy P; Laurindo FR; Zweier JL
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H466-74. PubMed ID: 11788393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation.
    Spiekermann S; Landmesser U; Dikalov S; Bredt M; Gamez G; Tatge H; Reepschläger N; Hornig B; Drexler H; Harrison DG
    Circulation; 2003 Mar; 107(10):1383-9. PubMed ID: 12642358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C.
    Heitzer T; Wenzel U; Hink U; Krollner D; Skatchkov M; Stahl RA; MacHarzina R; Bräsen JH; Meinertz T; Münzel T
    Kidney Int; 1999 Jan; 55(1):252-60. PubMed ID: 9893134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells.
    Inoguchi T; Li P; Umeda F; Yu HY; Kakimoto M; Imamura M; Aoki T; Etoh T; Hashimoto T; Naruse M; Sano H; Utsumi H; Nawata H
    Diabetes; 2000 Nov; 49(11):1939-45. PubMed ID: 11078463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local production of O2- by NAD(P)H oxidase in the sarcoplasmic reticulum of coronary arterial myocytes: cADPR-mediated Ca2+ regulation.
    Zhang F; Jin S; Yi F; Xia M; Dewey WL; Li PL
    Cell Signal; 2008 Apr; 20(4):637-44. PubMed ID: 18207366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production.
    Dikalov SI; Dikalova AE; Bikineyeva AT; Schmidt HH; Harrison DG; Griendling KK
    Free Radic Biol Med; 2008 Nov; 45(9):1340-51. PubMed ID: 18760347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.