These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 11295884)

  • 1. Positron emission tomographic measurement of brain acetylcholinesterase activity using N-[(11)C]methylpiperidin-4-yl acetate without arterial blood sampling: methodology of shape analysis and its diagnostic power for Alzheimer's disease.
    Tanaka N; Fukushi K; Shinotoh H; Nagatsuka S; Namba H; Iyo M; Aotsuka A; Ota T; Tanada S; Irie T
    J Cereb Blood Flow Metab; 2001 Mar; 21(3):295-306. PubMed ID: 11295884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of [(11)C]MP4A using a high-radioactivity brain region that represents an integrated input function for measurement of cerebral acetylcholinesterase activity without arterial blood sampling.
    Nagatsuka Si S; Fukushi K; Shinotoh H; Namba H; Iyo M; Tanaka N; Aotsuka A; Ota T; Tanada S; Irie T
    J Cereb Blood Flow Metab; 2001 Nov; 21(11):1354-66. PubMed ID: 11702050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of simplified kinetic analyses for measurement of brain acetylcholinesterase activity using N-[11C]Methylpiperidin-4-yl propionate and positron emission tomography.
    Sato K; Fukushi K; Shinotoh H; Nagatsuka S; Tanaka N; Aotsuka A; Ota T; Shiraishi T; Tanada S; Iyo M; Irie T
    J Cereb Blood Flow Metab; 2004 Jun; 24(6):600-11. PubMed ID: 15181367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic modeling of N-[11C]methylpiperidin-4-yl propionate: alternatives for analysis of an irreversible positron emission tomography trace for measurement of acetylcholinesterase activity in human brain.
    Koeppe RA; Frey KA; Snyder SE; Meyer P; Kilbourn MR; Kuhl DE
    J Cereb Blood Flow Metab; 1999 Oct; 19(10):1150-63. PubMed ID: 10532640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dementia with Lewy bodies can be well-differentiated from Alzheimer's disease by measurement of brain acetylcholinesterase activity-a [11C]MP4A PET study.
    Shimada H; Hirano S; Sinotoh H; Ota T; Tanaka N; Sato K; Yamada M; Fukushi K; Irie T; Zhang MR; Higuchi M; Kuwabara S; Suhara T
    Int J Geriatr Psychiatry; 2015 Nov; 30(11):1105-13. PubMed ID: 26280153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple method for the detection of abnormal brain regions in Alzheimer's disease patients using [11C]MP4A: comparison with [123I]IMP SPECT.
    Ota T; Shinotoh H; Fukushi K; Nagatsuka S; Namba H; Iyo M; Aotsuka A; Tanaka N; Sato K; Shiraishi T; Tanada S; Arai H; Irie T
    Ann Nucl Med; 2004 May; 18(3):187-93. PubMed ID: 15233279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voxel-Based Acetylcholinesterase PET Study in Early and Late Onset Alzheimer's Disease.
    Hirano S; Shinotoh H; Shimada H; Ota T; Sato K; Tanaka N; Zhang MR; Higuchi M; Fukushi K; Irie T; Kuwabara S; Suhara T
    J Alzheimers Dis; 2018; 62(4):1539-1548. PubMed ID: 29562505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positron emission tomography: quantitative measurement of brain acetylcholinesterase activity using radiolabeled substrates.
    Namba H; Fukushi K; Nagatsuka S; Iyo M; Shinotoh H; Tanada S; Irie T
    Methods; 2002 Jul; 27(3):242-50. PubMed ID: 12183113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PET measurement of cerebral acetylcholine esterase activity without blood sampling.
    Herholz K; Lercher M; Wienhard K; Bauer B; Lenz O; Heiss WD
    Eur J Nucl Med; 2001 Apr; 28(4):472-7. PubMed ID: 11357497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain acetylcholinesterase activity: validation of a PET tracer in a rat model of Alzheimer's disease.
    Irie T; Fukushi K; Namba H; Iyo M; Tamagami H; Nagatsuka S; Ikota N
    J Nucl Med; 1996 Apr; 37(4):649-55. PubMed ID: 8691261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer's disease.
    Iyo M; Namba H; Fukushi K; Shinotoh H; Nagatsuka S; Suhara T; Sudo Y; Suzuki K; Irie T
    Lancet; 1997 Jun; 349(9068):1805-9. PubMed ID: 9269216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human cerebral acetylcholinesterase activity measured with positron emission tomography: procedure, normal values and effect of age.
    Namba H; Iyo M; Fukushi K; Shinotoh H; Nagatsuka S; Suhara T; Sudo Y; Suzuki K; Irie T
    Eur J Nucl Med; 1999 Feb; 26(2):135-43. PubMed ID: 9933347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of plasma IC50 of donepezil hydrochloride for brain acetylcholinesterase inhibition in monkey using N-[11C]methylpiperidin-4-yl acetate ([11C]MP4A) and PET.
    Shiraishi T; Kikuchi T; Fukushi K; Shinotoh H; Nagatsuka S; Tanaka N; Ota T; Sato K; Hirano S; Tanada S; Iyo M; Irie T
    Neuropsychopharmacology; 2005 Dec; 30(12):2154-61. PubMed ID: 15920507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progressive loss of cortical acetylcholinesterase activity in association with cognitive decline in Alzheimer's disease: a positron emission tomography study.
    Shinotoh H; Namba H; Fukushi K; Nagatsuka S; Tanaka N; Aotsuka A; Ota T; Tanada S; Irie T
    Ann Neurol; 2000 Aug; 48(2):194-200. PubMed ID: 10939570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [11C]-MP4A PET cholinergic measurements in amnestic mild cognitive impairment, probable Alzheimer's disease, and dementia with Lewy bodies: a Bayesian method and voxel-based analysis.
    Marcone A; Garibotto V; Moresco RM; Florea I; Panzacchi A; Carpinelli A; Virta JR; Tettamanti M; Borroni B; Padovani A; Bertoldo A; Herholz K; Rinne JO; Cappa SF; Perani D
    J Alzheimers Dis; 2012; 31(2):387-99. PubMed ID: 22596267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo evaluation of N-[18F]fluoroethylpiperidin-4ylmethyl acetate in rats compared with MP4A as a probe for measuring cerebral acetylcholinesterase activity.
    Kikuchi T; Okamura T; Zhang MR; Fukushi K; Irie T
    Synapse; 2010 Mar; 64(3):209-15. PubMed ID: 19862687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diminished glucose transport in Alzheimer's disease: dynamic PET studies.
    Jagust WJ; Seab JP; Huesman RH; Valk PE; Mathis CA; Reed BR; Coxson PG; Budinger TF
    J Cereb Blood Flow Metab; 1991 Mar; 11(2):323-30. PubMed ID: 1997504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial distributions of cholinergic impairment and neuronal hypometabolism differ in MCI due to AD.
    Richter N; Nellessen N; Dronse J; Dillen K; Jacobs HIL; Langen KJ; Dietlein M; Kracht L; Neumaier B; Fink GR; Kukolja J; Onur OA
    Neuroimage Clin; 2019; 24():101978. PubMed ID: 31422337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of radiolabeled metabolite elimination from the brain on the accuracy of cerebral enzyme activity estimation using positron emission tomography with substrate tracers.
    Ohya T; Okamura T; Nagai Y; Fukushi K; Irie T; Suhara T; Zhang MR; Fukumura T; Kikuchi T
    Neuroimage; 2011 Jun; 56(3):1105-10. PubMed ID: 21324368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-vivo measurements of regional acetylcholine esterase activity in degenerative dementia: comparison with blood flow and glucose metabolism.
    Herholz K; Bauer B; Wienhard K; Kracht L; Mielke R; Lenz MO; Strotmann T; Heiss WD
    J Neural Transm (Vienna); 2000; 107(12):1457-68. PubMed ID: 11458998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.