These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 11296872)

  • 1. Selectivity of multiple-contact nerve cuff electrodes: a simulation analysis.
    Choi AQ; Cavanaugh JK; Durand DM
    IEEE Trans Biomed Eng; 2001 Feb; 48(2):165-72. PubMed ID: 11296872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel electrode array for diameter-dependent control of axonal excitability: a simulation study.
    Lertmanorat Z; Durand DM
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1242-50. PubMed ID: 15248540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic measurement of the stimulation selectivity of the flat interface nerve electrode.
    Leventhal DK; Durand DM
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1649-58. PubMed ID: 15376513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode array for reversing the recruitment order of peripheral nerve stimulation: experimental studies.
    Lertmanorat Z; Gustafson KJ; Durand DM
    Ann Biomed Eng; 2006 Jan; 34(1):152-60. PubMed ID: 16453204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve.
    Kent AR; Grill WM
    J Neural Eng; 2013 Jun; 10(3):036010. PubMed ID: 23594706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic histological effects of the flat interface nerve electrode.
    Leventhal DK; Cohen M; Durand DM
    J Neural Eng; 2006 Jun; 3(2):102-13. PubMed ID: 16705266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human nerve stimulation thresholds and selectivity using a multi-contact nerve cuff electrode.
    Polasek KH; Hoyen HA; Keith MW; Tyler DJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):76-82. PubMed ID: 17436879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular voltage profile for reversing the recruitment order of peripheral nerve stimulation: a simulation study.
    Lertmanorat Z; Durand DM
    J Neural Eng; 2004 Dec; 1(4):202-11. PubMed ID: 15876640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode.
    Tyler DJ; Durand DM
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):294-303. PubMed ID: 12611367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of contacts configuration and location on selective stimulation of cuff electrode.
    Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y
    Biomed Mater Eng; 2015; 25(3):237-48. PubMed ID: 26407110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of joint torque evoked with monopolar and tripolar-cuff electrodes.
    Tarler MD; Mortimer JT
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):227-35. PubMed ID: 14518785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode.
    Raspopovic S; Capogrosso M; Micera S
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):333-44. PubMed ID: 21693427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective control of muscle activation with a multipolar nerve cuff electrode.
    Veraart C; Grill WM; Mortimer JT
    IEEE Trans Biomed Eng; 1993 Jul; 40(7):640-53. PubMed ID: 8244425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling study of peripheral nerve recording selectivity.
    Perez-Orive J; Durand DM
    IEEE Trans Rehabil Eng; 2000 Sep; 8(3):320-9. PubMed ID: 11001512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flat electrode contacts for vagus nerve stimulation.
    Bucksot JE; Wells AJ; Rahebi KC; Sivaji V; Romero-Ortega M; Kilgard MP; Rennaker RL; Hays SA
    PLoS One; 2019; 14(11):e0215191. PubMed ID: 31738766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles.
    Badia J; Boretius T; Andreu D; Azevedo-Coste C; Stieglitz T; Navarro X
    J Neural Eng; 2011 Jun; 8(3):036023. PubMed ID: 21558601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nerve cuff technique for selective excitation of peripheral nerve trunk regions.
    Sweeney JD; Ksienski DA; Mortimer JT
    IEEE Trans Biomed Eng; 1990 Jul; 37(7):706-15. PubMed ID: 2394459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective activation of small motor axons by quasi-trapezoidal current pulses.
    Fang ZP; Mortimer JT
    IEEE Trans Biomed Eng; 1991 Feb; 38(2):168-74. PubMed ID: 2066126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity and selectivity of intraneural stimulation using a silicon electrode array.
    Rutten WL; van Wier HJ; Put JH
    IEEE Trans Biomed Eng; 1991 Feb; 38(2):192-8. PubMed ID: 2066129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.