BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 11296938)

  • 41. Identification of Pure-Tone Audiologic Thresholds for Pediatric Cochlear Implant Candidacy: A Systematic Review.
    de Kleijn JL; van Kalmthout LWM; van der Vossen MJB; Vonck BMD; Topsakal V; Bruijnzeel H
    JAMA Otolaryngol Head Neck Surg; 2018 Jul; 144(7):630-638. PubMed ID: 29800000
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Older Individuals Meeting Medicare Cochlear Implant Candidacy Criteria in Noise but Not in Quiet: Are These Patients Improved by Surgery?
    Mudery JA; Francis R; McCrary H; Jacob A
    Otol Neurotol; 2017 Feb; 38(2):187-191. PubMed ID: 27832005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Cochlear implant in children: rational, indications and cost/efficacy].
    Martini A; Bovo R; Trevisi P; Forli F; Berrettini S
    Minerva Pediatr; 2013 Jun; 65(3):325-39. PubMed ID: 23685383
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The impact of cochlear implantation on speech understanding, subjective hearing performance, and tinnitus perception in patients with unilateral severe to profound hearing loss.
    Távora-Vieira D; Marino R; Acharya A; Rajan GP
    Otol Neurotol; 2015 Mar; 36(3):430-6. PubMed ID: 25594387
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Speech perception for adults who use hearing aids in conjunction with cochlear implants in opposite ears.
    Mok M; Grayden D; Dowell RC; Lawrence D
    J Speech Lang Hear Res; 2006 Apr; 49(2):338-51. PubMed ID: 16671848
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Benefits of a Hearing Registry: Cochlear Implant Candidacy in Quiet Versus Noise in 1,611 Patients.
    Dunn C; Miller SE; Schafer EC; Silva C; Gifford RH; Grisel JJ
    Am J Audiol; 2020 Dec; 29(4):851-861. PubMed ID: 32966101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Speech recognition performance of patients with sensorineural hearing loss under unaided and aided conditions using linear and compression hearing AIDS.
    Shanks JE; Wilson RH; Larson V; Williams D
    Ear Hear; 2002 Aug; 23(4):280-90. PubMed ID: 12195170
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Implication of central asymmetry in speech processing on selecting the ear for cochlear implantation.
    Morris LG; Mallur PS; Roland JT; Waltzman SB; Lalwani AK
    Otol Neurotol; 2007 Jan; 28(1):25-30. PubMed ID: 17195742
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Criteria for Selecting an Optimal Device for the Contralateral Ear of Children with a Unilateral Cochlear Implant.
    Jeong SW; Kang MY; Kim LS
    Audiol Neurootol; 2015; 20(5):314-21. PubMed ID: 26277845
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Indication of direct acoustical cochlea stimulation in comparison to cochlear implants.
    Kludt E; Büchner A; Schwab B; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():185-190. PubMed ID: 26836967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simultaneous bilateral cochlear implantation in adults: a multicenter clinical study.
    Litovsky R; Parkinson A; Arcaroli J; Sammeth C
    Ear Hear; 2006 Dec; 27(6):714-31. PubMed ID: 17086081
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relationships among speech perception, production, language, hearing loss, and age in children with impaired hearing.
    Blamey PJ; Sarant JZ; Paatsch LE; Barry JG; Bow CP; Wales RJ; Wright M; Psarros C; Rattigan K; Tooher R
    J Speech Lang Hear Res; 2001 Apr; 44(2):264-85. PubMed ID: 11324650
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unilateral Hearing Loss: Understanding Speech Recognition and Localization Variability-Implications for Cochlear Implant Candidacy.
    Firszt JB; Reeder RM; Holden LK
    Ear Hear; 2017; 38(2):159-173. PubMed ID: 28067750
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cochlear implantation in patients with Meniere's disease.
    Samy RN; Houston L; Scott M; Choo DI; Meinzen-Derr J
    Cochlear Implants Int; 2015 Jul; 16(4):208-12. PubMed ID: 25490724
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improvement of speech perception in quiet and in noise without decreasing localization abilities with the bone conduction device Bonebridge.
    Weiss R; Leinung M; Baumann U; Weißgerber T; Rader T; Stöver T
    Eur Arch Otorhinolaryngol; 2017 May; 274(5):2107-2115. PubMed ID: 28032241
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of different speech coding strategies using a disability-based inventory and speech perception tests in quiet and in noise.
    Beynon AJ; Snik AF; van den Broek P
    Otol Neurotol; 2003 May; 24(3):392-6. PubMed ID: 12806290
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ten-year follow-up of a consecutive series of children with multichannel cochlear implants.
    Uziel AS; Sillon M; Vieu A; Artieres F; Piron JP; Daures JP; Mondain M
    Otol Neurotol; 2007 Aug; 28(5):615-28. PubMed ID: 17667770
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [A long term effect on speech recognition in the patients with simultaneous bilateral cochlear implants].
    Wang B; Wei CG; Cao KL; Jin X; Wang Y; Wang NY
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2018 Mar; 53(3):189-195. PubMed ID: 29614551
    [No Abstract]   [Full Text] [Related]  

  • 59. The case for earlier cochlear implantation in postlingually deaf adults.
    Dowell RC
    Int J Audiol; 2016; 55 Suppl 2():S51-6. PubMed ID: 26918896
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The influence of different speech processor and hearing aid settings on speech perception outcomes in electric acoustic stimulation patients.
    Vermeire K; Anderson I; Flynn M; Van de Heyning P
    Ear Hear; 2008 Jan; 29(1):76-86. PubMed ID: 18091097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.