These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 11297389)
1. Studies on digestive proteases from midgut glands of a shrimp, Penaeus indicus, and a lobster, Nephrops norvegicus: Part 1. Proteolytic activity. Omondi JG; Stark JR Appl Biochem Biotechnol; 2001 Feb; 90(2):137-53. PubMed ID: 11297389 [TBL] [Abstract][Full Text] [Related]
2. Purification and characterization of hatching enzyme from shrimp Penaeus chinensis. Li BJ; Fan TJ; Yang LL; Cong RS; Li L; Sun WJ; Lu CX; Shi ZP Arch Biochem Biophys; 2006 Jul; 451(2):188-93. PubMed ID: 16713987 [TBL] [Abstract][Full Text] [Related]
3. Digestive proteinases of red shrimp Pleoticus muelleri (Decapoda, Penaeoidea): partial characterization and relationship with molting. Fernández Gimenez AV; García-Carreño FL; Navarrete del Toro MA; Fenucci JL Comp Biochem Physiol B Biochem Mol Biol; 2001 Oct; 130(3):331-8. PubMed ID: 11567895 [TBL] [Abstract][Full Text] [Related]
4. Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei. Muhlia-Almazán A; García-Carreño FL Comp Biochem Physiol B Biochem Mol Biol; 2002 Nov; 133(3):383-94. PubMed ID: 12431406 [TBL] [Abstract][Full Text] [Related]
5. Effects of dietary protein on the activity and mRNA level of trypsin in the midgut gland of the white shrimp Penaeus vannamei. Muhlia-Almazán A; García-Carreño FL; Sánchez-Paz JA; Yepiz-Plascencia G; Peregrino-Uriarte AB Comp Biochem Physiol B Biochem Mol Biol; 2003 Jun; 135(2):373-83. PubMed ID: 12798946 [TBL] [Abstract][Full Text] [Related]
6. Biochemical characterisation of chymotrypsin from the midgut gland of yellowleg shrimp, Penaeus californiensis. Navarrete-del-Toro MA; García-Carreño FL; Hernández-Cortés P; Molnár T; Gráf L Food Chem; 2015 Apr; 173():147-55. PubMed ID: 25466006 [TBL] [Abstract][Full Text] [Related]
7. Collagenolytic activity of crustacean midgut serine proteases: comparison with the bacterial and mammalian enzymes. Chen YL; Lu PJ; Tsai IH Comp Biochem Physiol B; 1991; 100(4):763-8. PubMed ID: 1782759 [TBL] [Abstract][Full Text] [Related]
8. Reduction of proteolytic degradation by chlorhexidine. Grenier D J Dent Res; 1993 Mar; 72(3):630-3. PubMed ID: 8383711 [TBL] [Abstract][Full Text] [Related]
9. Midgut proteases from Mamestra configurata (Lepidoptera: Noctuidae) larvae: characterization, cDNA cloning, and expressed sequence tag analysis. Hegedus D; Baldwin D; O'Grady M; Braun L; Gleddie S; Sharpe A; Lydiate D; Erlandson M Arch Insect Biochem Physiol; 2003 May; 53(1):30-47. PubMed ID: 12701112 [TBL] [Abstract][Full Text] [Related]
10. Characterization of digestive proteolytic activity in Lygus hesperus Knight (Hemiptera: Miridae). Knop Wright M; Brandt SL; Coudron TA; Wagner RM; Habibi J; Backus EA; Huesing JE J Insect Physiol; 2006 Jul; 52(7):717-28. PubMed ID: 16712868 [TBL] [Abstract][Full Text] [Related]
11. Effect of pH on the growth and proteolytic activity of Porphyromonas gingivalis and Bacteroides intermedius. Takahashi N; Schachtele CF J Dent Res; 1990 Jun; 69(6):1266-9. PubMed ID: 2191980 [TBL] [Abstract][Full Text] [Related]
12. Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera. Hamdi M; Hammami A; Hajji S; Jridi M; Nasri M; Nasri R Int J Biol Macromol; 2017 Aug; 101():455-463. PubMed ID: 28336276 [TBL] [Abstract][Full Text] [Related]
13. Spatial distribution of digestive proteinases in the midgut of the Pacific white shrimp (Litopenaeus vannamei) indicates the existence of endo-ectoperitrophic circulation in Crustacea. Alexandre D; Ozório RA; Derner RB; Fracalossi DM; Oliveira GB; Samuels RI; Terra WR; Silva CP Comp Biochem Physiol B Biochem Mol Biol; 2014; 172-173():90-5. PubMed ID: 24813823 [TBL] [Abstract][Full Text] [Related]
14. Purification, biochemical characterization and N-terminal sequence of a serine-protease with chymotrypsic and collagenolytic activities in a tropical shrimp, Penaeus vannamei (Crustacea, Decapoda). Van Wormhoudt A; Le Chevalier P; Sellos D Comp Biochem Physiol B; 1992 Nov; 103(3):675-80. PubMed ID: 1458841 [TBL] [Abstract][Full Text] [Related]
15. Branched-chain-amino-acid-preferring peptidase activity of the lobster multicatalytic proteinase (proteasome) and the degradation of myofibrillar proteins. Mykles DL; Haire MF Biochem J; 1995 Feb; 306 ( Pt 1)(Pt 1):285-91. PubMed ID: 7864822 [TBL] [Abstract][Full Text] [Related]
16. Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Penaeus vannamei suitable for food and detergent industries. Dadshahi Z; Homaei A; Zeinali F; Sajedi RH; Khajeh K Food Chem; 2016 Jul; 202():110-5. PubMed ID: 26920273 [TBL] [Abstract][Full Text] [Related]
18. The midgut chymotrypsins of shrimps (Penaeus monodon, Penaeus japonicus and Penaeus penicillatus). Tsai IH; Lu PJ; Chuang JL Biochim Biophys Acta; 1991 Oct; 1080(1):59-67. PubMed ID: 1657178 [TBL] [Abstract][Full Text] [Related]
19. Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Powers JC; Tanaka T; Harper JW; Minematsu Y; Barker L; Lincoln D; Crumley KV; Fraki JE; Schechter NM; Lazarus GG Biochemistry; 1985 Apr; 24(8):2048-58. PubMed ID: 3893542 [TBL] [Abstract][Full Text] [Related]
20. The midgut trypsins of shrimp (Penaeus monodon). High efficiency toward native protein substrates including collagens. Lu PJ; Liu HC; Tsai IH Biol Chem Hoppe Seyler; 1990 Sep; 371(9):851-9. PubMed ID: 1963309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]