These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11297395)

  • 21. [Chlorophenols in urine as an environmental medicine monitoring parameter].
    Wrbitzky R; Angerer J; Lehnert G
    Gesundheitswesen; 1994 Nov; 56(11):629-35. PubMed ID: 7819677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles.
    Poirier I; Kuhn L; Demortière A; Mirvaux B; Hammann P; Chicher J; Caplat C; Pallud M; Bertrand M
    J Proteomics; 2016 Oct; 148():213-27. PubMed ID: 27523480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of Pseudomonas fluorescens species highly resistant to pentachlorobenzene.
    Montánchez I; Kaberdina AC; Sevillano E; Gallego L; Rodríguez-Couto S; Kaberdin VR
    Folia Microbiol (Praha); 2017 Jul; 62(4):325-334. PubMed ID: 28188482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences in the sensitivity of short-term bioassays.
    Trevors JT
    Bull Environ Contam Toxicol; 1982 Jun; 28(6):655-9. PubMed ID: 6809080
    [No Abstract]   [Full Text] [Related]  

  • 25. A flow cytometry based oligotrophic pollutant exposure test to detect bacterial growth inhibition and cell injury.
    Czechowska K; van der Meer JR
    Environ Sci Technol; 2011 Jul; 45(13):5820-7. PubMed ID: 21657560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering Pseudomonas fluorescens for biodegradation of 2,4-dinitrotoluene.
    Monti MR; Smania AM; Fabro G; Alvarez ME; Argaraña CE
    Appl Environ Microbiol; 2005 Dec; 71(12):8864-72. PubMed ID: 16332883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Luminometric measurement of population activity of genetically modified Pseudomonas fluorescens in the soil.
    Meikle A; Killham K; Prosser JI; Glover LA
    FEMS Microbiol Lett; 1992 Dec; 78(2-3):217-20. PubMed ID: 1490601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of QSARs to investigate the bacterial toxicity and biotransformation potential of aromatic heterocylic compounds.
    Bundy JG; Morriss AW; Durham DG; Campbell CD; Paton GI
    Chemosphere; 2001 Mar; 42(8):885-92. PubMed ID: 11272910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel continuous toxicity test system using a luminously modified freshwater bacterium.
    Cho JC; Park KJ; Ihm HS; Park JE; Kim SY; Kang I; Lee KH; Jahng D; Lee DH; Kim SJ
    Biosens Bioelectron; 2004 Sep; 20(2):338-44. PubMed ID: 15308239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of phenolic antioxidants on the toxicity of pentachlorophenol in short-term bacterial bioassays.
    Trevors JT; Mayfield CI; Inniss WE; Thompson JE
    Bull Environ Contam Toxicol; 1981 Oct; 27(4):433-9. PubMed ID: 6796155
    [No Abstract]   [Full Text] [Related]  

  • 31. Regression and cluster analysis of the acute toxicity of 267 chemicals to six species of biota and the octanol/water partition coefficient.
    Kaiser KL; Esterby SR
    Sci Total Environ; 1991 Dec; 109-110():499-514. PubMed ID: 1815369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity of chlorophenols to Pseudokirchneriella subcapitata under air-tight test environment.
    Chen CY; Lin JH
    Chemosphere; 2006 Jan; 62(4):503-9. PubMed ID: 16146643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact.
    Ahlborg UG; Thunberg TM
    Crit Rev Toxicol; 1980 Jul; 7(1):1-35. PubMed ID: 6996925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of experimental methods for determination of toxicity and biodegradability of xenobiotic compounds.
    Polo AM; Tobajas M; Sanchis S; Mohedano AF; Rodríguez JJ
    Biodegradation; 2011 Jul; 22(4):751-61. PubMed ID: 21221722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative quantitative structure-activity-activity relationships for toxicity to Tetrahymena pyriformis and Pimephales promelas.
    Kahn I; Maran U; Benfenati E; Netzeva TI; Schultz TW; Cronin MT
    Altern Lab Anim; 2007 Mar; 35(1):15-24. PubMed ID: 17411347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of the multi-channel continuous monitoring system through the use of Xenorhabdus luminescens lux fusions.
    Lee JH; Mitchell RJ; Gu MB
    Biosens Bioelectron; 2004 Oct; 20(3):475-81. PubMed ID: 15494228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Study on the quantitative structure toxicity relations of chlorophenols in some aquatic species].
    Luo Y; Xu X
    Wei Sheng Yan Jiu; 2001 Mar; 30(2):72-4. PubMed ID: 11321953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of toxicity and genotoxicity of 2-chlorophenol on bacteria, fish and human cells.
    Vlastos D; Antonopoulou M; Konstantinou I
    Sci Total Environ; 2016 May; 551-552():649-55. PubMed ID: 26897408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A tripartite microbial reporter gene system for real-time assays of soil nutrient status.
    Standing D; Meharg AA; Killham K
    FEMS Microbiol Lett; 2003 Mar; 220(1):35-9. PubMed ID: 12644225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toxicity of metals and organic chemicals evaluated with bioluminescence assays.
    Ren S; Frymier PD
    Chemosphere; 2005 Feb; 58(5):543-50. PubMed ID: 15620747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.