BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 11297400)

  • 21. Bioaugmentation of a historically contaminated soil by polychlorinated biphenyls with Lentinus tigrinus.
    Federici E; Giubilei M; Santi G; Zanaroli G; Negroni A; Fava F; Petruccioli M; D'Annibale A
    Microb Cell Fact; 2012 Mar; 11():35. PubMed ID: 22443185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of terpenes on the biodegradation of polychlorinated biphenyls by Pseudomonas stutzeri.
    Tandlich R; Brezná B; Dercová K
    Chemosphere; 2001 Sep; 44(7):1547-55. PubMed ID: 11545520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study of single cultures and a consortium of white rot fungi for polychlorinated biphenyls treatment.
    Benitez SF; Sadañoski MA; Velázquez JE; Zapata PD; Fonseca MI
    J Appl Microbiol; 2021 Oct; 131(4):1775-1786. PubMed ID: 33725409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation of PCB congeners by white rot fungus, Ceriporia sp. ZLY-2010, and analysis of metabolites.
    Hong CY; Gwak KS; Lee SY; Kim SH; Lee SM; Kwon M; Choi IG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(12):1878-88. PubMed ID: 22755535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autochthonous ascomycetes in depollution of polychlorinated biphenyls contaminated soil and sediment.
    Sage L; Périgon S; Faure M; Gaignaire C; Abdelghafour M; Mehu J; Geremia RA; Mouhamadou B
    Chemosphere; 2014 Sep; 110():62-9. PubMed ID: 24880600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PCB in the environment: bio-based processes for soil decontamination and management of waste from the industrial production of Pleurotus ostreatus.
    Siracusa G; Becarelli S; Lorenzi R; Gentini A; Di Gregorio S
    N Biotechnol; 2017 Oct; 39(Pt B):232-239. PubMed ID: 28870506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of biodegradation rate constants of hydroxylated polychlorinated biphenyls by fungal laccases from Trametes versicolor and Pleurotus ostreatus.
    Jiang GX; Niu JF; Zhang SP; Zhang ZY; Xie B
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):1-6. PubMed ID: 18461267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors affecting PCB degradation by an implanted bacterial strain in soil microcosms.
    Barriault D; Sylvestre M
    Can J Microbiol; 1993 Jun; 39(6):594-602. PubMed ID: 8358671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phyto/rhizoremediation studies using long-term PCB-contaminated soil.
    Mackova M; Prouzova P; Stursa P; Ryslava E; Uhlik O; Beranova K; Rezek J; Kurzawova V; Demnerova K; Macek T
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):817-29. PubMed ID: 19823887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora.
    Kamei I; Sonoki S; Haraguchi K; Kondo R
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):932-40. PubMed ID: 16862425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of comprehensive polychlorinated biphenyl degrading bacterium, Enterobacter sp. LY402.
    Jia LY; Zheng AP; Xu L; Huang XD; Zhang Q; Yang FL
    J Microbiol Biotechnol; 2008 May; 18(5):952-7. PubMed ID: 18633297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional analysis of potential polychlorinated biphenyl degrading bacterial strains from China.
    Shuai J; Yu X; Zhang J; Xiong AS; Xiong F
    Braz J Microbiol; 2016; 47(3):536-41. PubMed ID: 27140507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production.
    Hestbjerg H; Willumsen PA; Christensen M; Andersen O; Jacobsen CS
    Environ Toxicol Chem; 2003 Apr; 22(4):692-8. PubMed ID: 12685699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of polychlorinated biphenyl-degrading bacteria isolated from contaminated sites in Czechia.
    Totevová S; Prouza M; Burkhard J; Demnerová K; Brenner V
    Folia Microbiol (Praha); 2002; 47(3):247-54. PubMed ID: 12094733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of PCB-degrading bacteria: physiological aspects.
    Pazlarová J; Demnerová K; Macková M; Burkhard J
    Lett Appl Microbiol; 1997 May; 24(5):334-6. PubMed ID: 9229481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of polychlorinated biphenyl congeners in mixture Delor 103 from wastewater by ozonation vs/and biological method.
    Dudasova H; Derco J; Sumegova L; Dercova K; Laszlova K
    J Hazard Mater; 2017 Jan; 321():54-61. PubMed ID: 27607933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol.
    Soares A; Jonasson K; Terrazas E; Guieysse B; Mattiasson B
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):719-25. PubMed ID: 15735968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of 2III7-3 fractional factorial experimental design to enhance enzymatic activities of Pleurotus ostreatus with high concentrations of polychlorinated biphenyls.
    Gayosso-Canales M; Esparza-García FJ; Bermúdez-Cruz RM; Tomasini A; Ruiz-Aguilar GM; Rodríguez-Vázquez R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(3):298-305. PubMed ID: 21308601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula.
    Purnomo AS; Putra SR; Shimizu K; Kondo R
    Environ Sci Pollut Res Int; 2014 Oct; 21(19):11305-12. PubMed ID: 24840358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2.
    Komancová M; Jurcová I; Kochánková L; Burkhard J
    Chemosphere; 2003 Jan; 50(4):537-43. PubMed ID: 12685753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.