BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 11297400)

  • 41. Characterization of the PCB substrate range of microbial dechlorination process LP.
    Bedard DL; Pohl EA; Bailey JJ; Murphy A
    Environ Sci Technol; 2005 Sep; 39(17):6831-8. PubMed ID: 16190246
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolism of 4,4'-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142.
    Kamei I; Kogura R; Kondo R
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):566-75. PubMed ID: 16528513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls.
    Mouhamadou B; Faure M; Sage L; Marçais J; Souard F; Geremia RA
    Fungal Biol; 2013 Apr; 117(4):268-74. PubMed ID: 23622721
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Levels of polychlorinated biphenyls in Mexican soils and their biodegradation using bioaugmentation.
    Rojas-Avelizapa NG; Martínez-Cruz J; Zermeño-Eguía Lis JA; Rodríguez-Vázquez R
    Bull Environ Contam Toxicol; 2003 Jan; 70(1):63-70. PubMed ID: 12478425
    [No Abstract]   [Full Text] [Related]  

  • 45. Extensive biodegradation of polychlorinated biphenyls in Aroclor 1242 and electrical transformer fluid (Askarel) by natural strains of microorganisms indigenous to contaminated African systems.
    Adebusoye SA; Ilori MO; Picardal FW; Amund OO
    Chemosphere; 2008 Aug; 73(1):126-32. PubMed ID: 18550146
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular diagnostics for polychlorinated biphenyl degradation in contaminated soils.
    Layton AC; Lajoie CA; Easter JP; Jernigan R; Beck MJ; Sayler GS
    Ann N Y Acad Sci; 1994 May; 721():407-22. PubMed ID: 8010689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Congener selectivity during polychlorinated biphenyls degradation by Enterobacter sp. LY402.
    Xu L; Xu JJ; Jia LY; Liu WB; Jian X
    Curr Microbiol; 2011 Mar; 62(3):784-9. PubMed ID: 20972789
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Degradation of aromatic hydrocarbons by white-rot fungi in a historically contaminated soil.
    D'Annibale A; Ricci M; Leonardi V; Quaratino D; Mincione E; Petruccioli M
    Biotechnol Bioeng; 2005 Jun; 90(6):723-31. PubMed ID: 15858792
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism.
    Beaudette LA; Ward OP; Pickard MA; Fedorak PM
    Lett Appl Microbiol; 2000 Feb; 30(2):155-60. PubMed ID: 10736020
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cucurbita spp. and Cucumis sativus enhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development.
    Qin H; Brookes PC; Xu J
    Environ Pollut; 2014 Jan; 184():306-12. PubMed ID: 24077568
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exoenzymes of Trametes versicolor can metabolize coplanar PCB congeners and hydroxy PCB.
    Takagi S; Shirota C; Sakaguchi K; Suzuki J; Sue T; Nagasaka H; Hisamatsu S; Sonoki S
    Chemosphere; 2007 Apr; 67(9):S54-7. PubMed ID: 17250871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of two wild types of Pleurotus ostreatus (MCC07 and MCC20) isolated from nature for their ability to decolorize Benazol Black ZN textile dye in comparison to some commercial types of white rot fungi: Pleurotus ostreatus, Pleurotus djamor, and Pleurotus citrinopileatus.
    Kalmiş E; Azbar N; Kalyoncu F
    Can J Microbiol; 2008 May; 54(5):366-70. PubMed ID: 18449221
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect.
    Chekol T; Vough LR; Chaney RL
    Environ Int; 2004 Aug; 30(6):799-804. PubMed ID: 15120198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A kinetic distribution model of evaporation, biosorption and biodegradation of polychlorinated biphenyls (PCBs) in the suspension of Pseudomonas stutzeri.
    Dercová K; Vrana B; Baláz S
    Chemosphere; 1999 Mar; 38(6):1391-400. PubMed ID: 10070727
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microbial dehalogenation of polychlorinated biphenyls in aerobic conditions.
    Aráoz B; Viale AA
    Rev Argent Microbiol; 2004; 36(1):47-51. PubMed ID: 15174750
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessment of natural attenuation via in situ reductive dechlorination of polychlorinated biphenyls in sediments of the Twelve Mile Creek arm of Lake Hartwell, SC.
    Pakdeesusuk U; Lee CM; Coates JT; Freedman DL
    Environ Sci Technol; 2005 Feb; 39(4):945-52. PubMed ID: 15773465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PCB levels and congener patterns from Korean municipal waste incinerator stack emissions.
    Ikonomou MG; Sather P; Oh JE; Choi WY; Chang YS
    Chemosphere; 2002 Oct; 49(2):205-16. PubMed ID: 12375867
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular diagnostics and chemical analysis for assessing biodegradation of polychlorinated biphenyls in contaminated soils.
    Layton AC; Lajoie CA; Easter JP; Jernigan R; Sanseverino J; Sayler GS
    J Ind Microbiol; 1994 Nov; 13(6):392-401. PubMed ID: 7765670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Copper removal from aqueous solutions by white rot fungus Pleurotus ostreatus GEMB-PO1 and its potential in co-remediation of copper and organic pollutants.
    Gao X; Wei M; Zhang X; Xun Y; Duan M; Yang Z; Zhu M; Zhu Y; Zhuo R
    Bioresour Technol; 2024 Mar; 395():130337. PubMed ID: 38244937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioaugmentation of a polychlorobiphenyl contaminated soil with two aerobic bacterial strains.
    Egorova DO; Demakov VA; Plotnikova EG
    J Hazard Mater; 2013 Oct; 261():378-86. PubMed ID: 23973470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.