These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 11297729)
1. Intrinsic fluorescence changes and rapid kinetics of proteinase deformation during serpin inhibition. Tew DJ; Bottomley SP FEBS Lett; 2001 Apr; 494(1-2):30-3. PubMed ID: 11297729 [TBL] [Abstract][Full Text] [Related]
2. Probing the equilibrium denaturation of the serpin alpha(1)-antitrypsin with single tryptophan mutants; evidence for structure in the urea unfolded state. Tew DJ; Bottomley SP J Mol Biol; 2001 Nov; 313(5):1161-9. PubMed ID: 11700071 [TBL] [Abstract][Full Text] [Related]
3. Insight into the mechanism of serpin-proteinase inhibition from 2D [1H-15N] NMR studies of the 69 kDa alpha 1-proteinase inhibitor Pittsburgh-trypsin covalent complex. Peterson FC; Gettins PG Biochemistry; 2001 May; 40(21):6284-92. PubMed ID: 11371190 [TBL] [Abstract][Full Text] [Related]
4. Acid Denaturation of alpha1-antitrypsin: characterization of a novel mechanism of serpin polymerization. Devlin GL; Chow MK; Howlett GJ; Bottomley SP J Mol Biol; 2002 Dec; 324(4):859-70. PubMed ID: 12460583 [TBL] [Abstract][Full Text] [Related]
5. Change in environment of the P1 side chain upon progression from the Michaelis complex to the covalent serpin-proteinase complex. Futamura A; Stratikos E; Olson ST; Gettins PG Biochemistry; 1998 Sep; 37(38):13110-9. PubMed ID: 9748317 [TBL] [Abstract][Full Text] [Related]
6. Mapping the serpin-proteinase complex using single cysteine variants of alpha1-proteinase inhibitor Pittsburgh. Stratikos E; Gettins PG J Biol Chem; 1998 Jun; 273(25):15582-9. PubMed ID: 9624149 [TBL] [Abstract][Full Text] [Related]
7. Structure of a serpin-protease complex shows inhibition by deformation. Huntington JA; Read RJ; Carrell RW Nature; 2000 Oct; 407(6806):923-6. PubMed ID: 11057674 [TBL] [Abstract][Full Text] [Related]
8. The pH dependence of serpin-proteinase complex dissociation reveals a mechanism of complex stabilization involving inactive and active conformational states of the proteinase which are perturbable by calcium. Calugaru SV; Swanson R; Olson ST J Biol Chem; 2001 Aug; 276(35):32446-55. PubMed ID: 11404362 [TBL] [Abstract][Full Text] [Related]
9. Viscous drag as the source of active site perturbation during protease translocation: insights into how inhibitory processes are controlled by serpin metastability. Shin JS; Yu MH J Mol Biol; 2006 Jun; 359(2):378-89. PubMed ID: 16626735 [TBL] [Abstract][Full Text] [Related]
11. alpha1-Proteinase inhibitor forms initial non-covalent and final covalent complexes with elastase analogously to other serpin-proteinase pairs, suggesting a common mechanism of inhibition. Dobó J; Gettins PG J Biol Chem; 2004 Mar; 279(10):9264-9. PubMed ID: 14593107 [TBL] [Abstract][Full Text] [Related]
12. The 1.5 A crystal structure of a prokaryote serpin: controlling conformational change in a heated environment. Irving JA; Cabrita LD; Rossjohn J; Pike RN; Bottomley SP; Whisstock JC Structure; 2003 Apr; 11(4):387-97. PubMed ID: 12679017 [TBL] [Abstract][Full Text] [Related]
13. Structure of a serpin-enzyme complex probed by cysteine substitutions and fluorescence spectroscopy. Ludeman JP; Whisstock JC; Hopkins PC; Le Bonniec BF; Bottomley SP Biophys J; 2001 Jan; 80(1):491-7. PubMed ID: 11159419 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the plasma elimination kinetics and conformational stabilities of native, proteinase-complexed, and reactive site cleaved serpins: comparison of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, antithrombin III, alpha 2-antiplasmin, angiotensinogen, and ovalbumin. Mast AE; Enghild JJ; Pizzo SV; Salvesen G Biochemistry; 1991 Feb; 30(6):1723-30. PubMed ID: 1704258 [TBL] [Abstract][Full Text] [Related]
15. The antithrombin P1 residue is important for target proteinase specificity but not for heparin activation of the serpin. Characterization of P1 antithrombin variants with altered proteinase specificity but normal heparin activation. Chuang YJ; Swanson R; Raja SM; Bock SC; Olson ST Biochemistry; 2001 Jun; 40(22):6670-9. PubMed ID: 11380262 [TBL] [Abstract][Full Text] [Related]
16. The loss of tryptophan 194 in antichymotrypsin lowers the kinetic barrier to misfolding. Pearce MC; Cabrita LD; Ellisdon AM; Bottomley SP FEBS J; 2007 Jul; 274(14):3622-3632. PubMed ID: 17608807 [TBL] [Abstract][Full Text] [Related]
18. Application of linear free energy relationships to the serpin-proteinase inhibition mechanism. Nash P; McFadden G; Whitty A FEBS Lett; 2000 Jun; 475(1):1-6. PubMed ID: 10854846 [TBL] [Abstract][Full Text] [Related]
19. Determining serpin conformational distributions with single molecule fluorescence. Mushero N; Gershenson A Methods Enzymol; 2011; 501():351-77. PubMed ID: 22078542 [TBL] [Abstract][Full Text] [Related]
20. Expression screening of bacterial libraries of recombinant alpha-1 proteinase inhibitor variants for candidates with thrombin inhibitory capacity. Bhakta V; Gierczak RF; Sheffield WP J Biotechnol; 2013 Dec; 168(4):373-81. PubMed ID: 24140600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]